Syllabus for the program of Integrated Master of Technology in Chemical Engineering

Preamble

The program, Integrated Master of Technology in Chemical Engineering is offered by Institute of Chemical Technology (ICT) Mumbai Campuses at Bhubaneshwar and Marathwada, Jalna.

About ICT Mumbai

The Institute of Chemical Technology (ICT) Mumbai, formerly UDCT, University of Bombay (Mumbai now) was established on October 1, 1933 as a department of the University by the desire of industry and support of the government of Province of Bombay, particularly to lend support to the textile (a staple industry in Western India) and chemical industry, an infant industry. Over the years the UDCT grew in its status and extended its programs to sectors of chemical and allied industry, pharmaceuticals, materials and energy and became a role model for its contributions to industrial connectivity and growth.

ICT was granted Deemed to be University by MHRD on 12th September 2008 and an elite status and Centre of Excellence on par with IITs/IISc/IISERs which was granted by the State Assembly on October 20, 2012; a unique distinction in history of India. ICT's track record of 85 years is phenomenal. ICT is ranked among the best in India having the highest NAAC rank of A++ with CGPA of 3.77. It was declared at Category I institute by MHRD/UGC Notification (The Gazette of India dated Feb. 12, 2018). On 3rd April, 2018, The National Institutional Ranking Framework (NIRF) of MHRD placed ICT at No. 10 in Engineering, No. 4 in Pharmacy, No. 19 among Universities and No. 30 among all. In QS BRICS 2019 ranking, ICT secured 115th rank among all with 100/100 marks for research and innovation. Once again in the Scopus Survey November 2018, ICT is found to be the top in Chemical Engineering and in top 5 overall in the country based on the Weighted Average Citation Impact (Sci-Val, Scopus). In the latest list of Institute of Eminence, ICT figures in 12 public institutes which will be considered by UGC/MHRD for special funding.

Over the years, ICT has produced more than 750 first generation entrepreneurs, 19 Padma awardees (3 PV, 8 PB, 8 PS), India's first 5 Ph Ds in Engineering and Technology. This sectorial excellence has been due to the students and faculty coming from all over India. ICT runs 9 UG, 18 PG, 29 Ph D, 1 PG Diploma in Che nical Technology Management and 1 Certificate Course in Chemical Safety and Risk Management, with a student strength of over 2300 among which currently there are 575 PG and 700 Ph D students in all branches of Engineering and Sciences.

Because of the Category I and Deemed to be status, it was possible for ICT to go out of Maharashtra. In view of massive investment in energy, petrochemicals, chemicals, polymers, textiles, minerals, materials, biotechnology and pharmaceutical industries in Odisha, ICT was requested to open a campus in Bhubaneswar. Indian Oil Corporation Ltd took a historic decision to support fully a campus of ICT in Bhubaneswar. It was officially launched at the hands of Hon'ble Shri Ram Nath Kovind, the President of India on 18th March 2018. Similarly, the Marathwada Campus was instituted at the behest of the Government of Maharashtra and was inaugurated by The Hon. Chief Minister Shri Devendra Phadnavis on 28 May 2018, Government of Maharashtra.

About Integrated Master of Technology Program

The unique features of the Integrated M. Tech. are

- 1. Integrated M. Tech. after 12th Standard (HSSC) of 5-year duration consisting of 15 trimesters with alternate term in industry, with major in Chemical Engineering and minor in 6 different disciplines.
- 2. To ensure in proved quality and industry relevance in curricula development for integrated M. Tech. (9 stduy trimesters in the Institute and 6 trimesters in the industry) in the field of Chemical Engineering as major branch with minor in Petrochemicals, Textiles, Polymers and Materials, Pharmaceuticals, and Energy Engineering, Food Engineering and Lipid Engineering (in Marathwada, Jalna).

- 3. The last two trimesters will be for promotion of experimental and design project to promote entrepreneurship and start-up companies.
- 4. Four-month Trimester pattern with studies and In-plant training (IPT) alternate term.
- 5. Simultaneous 2 years' experience in various Industries.
- 6. Vibrant syllabus with option to include case studies and IPT experiences in courses.
- 7. Collaborative projects with Industry by involving Ph.D. Fellows and faculty.
- 8. Student is continuously monitored and participates in class room discussions, home assignments and research project.
- 9. Student will be evaluated based on in-term evaluation (50%) and end-term examination (50%).
- 10. Many new subjects and choice based learning courses and some of them are
 - a. Environmental Science and Sustainability
 - b. Ethics and Industrial Practices
 - c. Experimental Design and Research Methodology
 - d. Finance and Profit Management
 - e. Green Chemistry and Engineering
 - f. Industrial and Labour Laws in India
 - g. Industrial Management
 - h. Intellectual Property Rights, Valuation and Management
 - i. Materials Management
 - i. Perspective of Global Industry
 - k. Research and Innovation Methodology
 - Sustainability and life cycle assessment

This concept/curriculum of Integrated M. Tech. is new and being introduced in India for the first time. During the industrial internship the student may receive stipend from industry making the education affordable to one and all. Along with the teaching, both these campuses will be equipped modern equipment for carrying out high class research and innovation at Centres of Excellence to develop Technology and to support Research & Development in industry and Skill Development in Chemical Engineering, Petrochemicals, Textiles, Polymers, Pharmaceuticals, Energy, etc. Thus, students will also work on some of the research ideas during one of the internship period in collaboration with the industry. One of the faculty will be mentor the students during this period. Students will get hands on analytical instruments during this period.

Course instruction and Grading System

- 1. The course will be trimester based each of 4-month duration. There will be 3 trimesters in each year.
- 2. The scheme of study and IPT terms is given below:

Year	Trimester	Scheme of
	0	trimesters
1	X T1	Theory
1 ,	V T2	Theory
1 /	/ T3	In-plant
2, 4	T4	Theory
2	T5	In-plant
2	T6	Theory
, \3	T7	In-plant_
	T8	Theory
3	T9	In-plant
4	T10	Theory
4	T11	In-plant
4	T12	Theory
5	T13	In-plant_
5	T14	Theory
5	T15	Theory

- 3. The grading system will be as per R.26 of ICT. (Annexure I)
- 4. The in-term assessment will be of 50% weightage and end-term exam will be of 50% weightage.
- 5. The in-term assessment would consist of at least three assessments.

Program Education Objectives

- 1. Prepare students for career in chemical and allied industry leveraging their technical expertise
- 2. Build leadership capabilities amongst students to meet the needs of society and industry
- 3. Create awareness amongst students about the social/industrial demands and role of chemical engineer in the society
- 4. Incorporate a culture of research and innovation by providing students with guidance and opportunities
- 5. Provide a platform to the students to interact with leading teachers, scientists and industry practitioners

Program Outcomes

The students completing Int. M. Tech. program in Chemical Engineering will

- 1. have sound knowledge of engineering, sciences, mathematics, and programming fundamentals
- 2. be able to solve complex problems by applying principles of engineering, sciences, mathematics and programming
- 3. be able to design, conduct experiments and analyze the data generated
- 4. have knowledge of fundamentals and innovation to solve the problems related to energy, food, environment, healthcare, etc.
- 5. have ability to keep abreast with the scientific literature, new technologies and new developments
- 6. work on complex problems in team and multidisciplinary situations
- 7. help government, society and industry to do technology development related activities for chemical and allied industries
- 8. cater to the needs of chemical industry, research organizations and academic institutes
- 9. set-up their own ventures and generate employment
- 10. promote awareness in society about Chemical Engineering profession

Graduate Attributes

- 1. Problem analysis and solving skills
- Experience with industry practices and
- 3. Familiar with usage of modern tools, techniques
- 4. Communication Skills
- 5. Capacity to analyze new concepts
- 6. Capacity to analyze and interpret experimental data
- 7. Capacity to analyze business trends
- 8. Capacity to design, optimize and operate equipment and plants safely, economically and effectively
- 9. Design and Development of solutions to industrial and societal needs
- 10. Skills related to Project Management and Economics
- 11. Skills to analyze scientific literature including patents
- 12. Ethics

List of subjects

Sr. No. No. Of Code	Stu	dy 1 (T1									
Cours (3)		Туре	IOCB		Subjects	Credit	Hrs	/We	ek		
Book	No					S					
Section Sect	•		(3)	(4)							
1					^		L	Т	Р		Total
Note	1	BS	BST31	BST410	Chemistry - I	4	3	1	0		100
Note		DC	01	1	C _A	1		1	0	F0	100
Note			02	2	' V						
Section Sec	3	BS			Mathematics-I	4	3	1	0	50	100
Study 2 (T2) Code Subjects Credit Study 2 (T2) Subjects Credit Study 2 (T2) Subjects Subjects	4	HU			Communication Skills/English	3	2	1	0	50	100
Figure	5	CE	CET31	CET41	Engineering and Chemical	3	2	1	0	50	100
Total Tot	6	ES		_		3	1	0	4	50	100
8 BS BSP31 01 1 BSP410 1 Chemistry Laboratory -I 2 2 0 0 4 50 100 Study 2 (T2) Study 2 (T2) Study 2 (T2) Code Subjects Credit St. Writerial Hrs/week Code Subjects Study 2 (T2) Study 2 (T2) Study 2 (T2) Study 2 (T2) Subjects Credit Hrs/week Code Subjects Study 2 (T2) Study 2 (T2) BST31 (Code Subjects) Credit Hrs/week Study 2 (T2) BST31 (Chapter) Chapter Study 3 (T4) BST31 (Chapter) Chapter Study 3 (T4) Total BSP31 (Chapter) Code Subjects Credit Hrs/week Credit Hrs/week Total Total Total Credit Hrs/week Credit Hrs/week Credit Hrs/week	7	ES	ESP310	ESP410		2	0	0	4	50	100
Study 2 (T2)	8	BS	BSP31	BSP410	Chemistry Laboratory -I	2	0	0	4	50	100
Study 2 (T2)			01		TOTAL	25		5			800
Code Subjects Credit Hrs/week Credit S					1/1		4			U	
Code Subjects Credit Hrs/week Credit S	Stu	dy 2 (T2)		G						
Study 3 (T4) Separate Subjects Simple				Code	Subjects		Hrs	/we	ek		
9 BS BST31 O4 4 A BST410 Chemistry-III A BS BST31 O5 SO					,0		L	Т	Р		Total
10	9	BS			Chemistry-II	4	3	1	0		100
11	10	BS	BST31	BST410	Physics -II	3	2	1	0	50	100
12 CE	11	BS	BST31	BST410	Mathematics-II	4	3	1	0	50	100
13	12	CE	CET31	CET41		4	3	1	0	50	100
14 HU BSP31	13	CE	CET32	CET41	Chemical Engineering	3	2	1	0	50	100
15	14	HU	BSP31	BSP410		2	0	0	4	50	100
16 ES BSP31 BSP410 Physics Laboratory 2 0 0 4 50 100 TOTAL 25 1 5 1 40 800	15	BS	ESP310	ESP410		3	1	0	4	50	100
TOTAL 25 1 4 5 1 40 800	16	ES	BSP31	BSP410		2	0	0	4	50	100
IPT 1 (T3)			03	O	TOTAL	25		5			800
1 IP IPP310 IPP410 In-Plant Training 8				0			4			U	
1 IP IPP310 IPP410 In-Plant Training 8	IPT	1 (T3)	-	_							
Study 3 (T4) Code Subjects Credit s Hrs/week s L T P E. Total	1				In-Plant Training	8					
Code Subjects Credit s Hrs/week L T P E. Total	-		-0,	1							
S L T P E. Total	Stu	dy 3 (T4									
L T P E. Total				Code	Subjects		Hrs	/we	ek		
							L	Т	Р		Total

18	BS	BST32	BST420	Chemistry - III	4	3	1	0	50	100
19	BS	01 BST32	BST420	Introduction to Biological	4	3	1	0	50	100
20	CE	02 CET32 01	2 CET42 01	Sciences & Bioengineering Momentum Transfer	4	3	1	0	50	100
21	CE	CET32 02	CET42 02	Chemical Engineering Thermodynamics- II	3	2	1	0	50	100
22	ES	EST320	EST420	Engineering and solid Mechanics	/ 3	2	1	0	50	100
23	ES	EST320 2	EST420 2	Electrical Engineering and Electronics	3	2	1	0	50	100
24	ES	ESP320 1	ESP420 1	Engineering Laboratory	2	0	0	4	50	100
25	ES	ESP320 2	ESP420 2	Engineering Applications of Computers-III	3	1	0	4	50	100
				TOTAL	26	1 6	6	8	40 0	800
				.0						
IPT	2 (T5)	IBES :	IBE 15.5		-					
	IP	IPP310 2	IPP410 2	In-Plant Training	8					
				, 0		L				
Stu	dy 4 (T6)	Carla	Cultivate	Con dit	11		- 1 -		
			Code	Subjects	Credit s		/wee			Tabal
					_	L	Т	Р	E. S.	Total
26	ES	EST320 3	EST420 3	Energy Engineering	4	3	1	0	50	100
27	CE	CET32 03	CET42 03	Heat Transfe	4	3	1	0	50	100
28	CE	CET32 04	CET42 04	Mass Transfer Operations	4	2	2	0	50	100
29	S	S <i>x</i> T310	S <i>x</i> T410 1	Special Subject I	3	2	1	0	50	100
30	HU	HUT32 01	HUT42 01	IPR and Laws	3	2	1	0	50	100
31	CE	CEP32 01	CEP42 01	Mathematical Methods in Chemical Engineering	4	2	0	4	50	100
32	CE	CEP32 02	CEP42 02	Chemical Engineering Laboratory-	4	0	0	8	50	100
				TOTAL	26	1 4	6	1 2	35 0	700
15-	2 /TZ\		V							
IP1	3 (T7) IP	IPP310 3	IPP410	In-Plant Training	8					
			7							
Stu	dy 5 (T8)	, V							
			70	Subjects	Credit s		/we		E. S.	Total
			0		_	L	T	Р		1.5.5
31	ES	EST340 4	EST430 4	Material Science and Engineering	3	2	1	0	50	100
32	S	ST	xxTxxx x	Special II	3	2	1	0	50	100
33	CE	CET33 01	CET43 01	Chemical Reaction Engineering	4	3	1	0	50	100
34	CE	CET33 04	CET43 04	Separation Processes	4	3	1	0	50	100
35	CE	CET33	CET43	Biochemical Engineering	3	2	1	0	50	100

		02	02							
36	CE	CEP33 01	CEP43 01	Chemical Engineering Laboratory-	4	0	0	8	50	100
37	CE	CEP33 11	CEP43 11	Process Simulation Lab - I	2	0	0	4	50	100
38	S	SP	XxP430 1	Special Lab -I	2	0	0	4	50	100
				TOTAL	25	1 2	5	1 6	40 0	800
				٥,						
IPT	4 (T9)	IDD210	IDD410	In Dignt Training	0		1			
	IP	IPP310 4	IPP410 4	In-Plant Training	8					
Stu	dy 6 (T1	0)		0						
Jean	ay O (11			Subjects	Credit s	Hrs	/we	ek		
				[3]		L	Т	Р	E. S.	Total
39	S	ST	xxT4xx x	Special Elective-III	3	2	1	0	50	100
40	S	ST	xxT4xx x	Special Elective-IV	3	2	1	0	50	100
41	CE	CET34 03	CET44 03	Environmental Engineering and Process Safety	3	2	1	0	50	100
42	CE	CET34 05	CET44 05	Chemical Process Control	4	3	1	0	50	100
43	CE	CEE34 08	CET44 08	Industrial and Engineering Chemistry	4	3	1	0	50	100
44	CE	CEP34 02	CEP44 02	Chem. Eng. Laboratory-III	4	0	0	8	50	100
45	CE	CEP34 12	CEP44 12	Process Simulation Lab-II	2	0	0	4	50	100
46	S	SP	xxP440 2	Special Lab-II	2	0	0	4	50	100
				TOTAL	25	1 2	5	1 6	40 0	800
	- /			J.						
IPI	5 (T11) IP	IPP310	IPP410	In-Plant Training	8					
	.,	5	5	W III-Halle Halling						
-	L 7 /T1	2)		0						
Stu	dy 7 (T1	.2)	No.	Subjects	Credit	Hrs	/we	∍k		
			*	Ų nystis	S					
			Α,			L	Т	Р	E. S.	Total
47	CE	CE340 9	CET44 09	Project Management and Economics in Chemical Industry	3	2	1	0	50	100
48	CE	CET34 06	CET44 06	Process Development and Engineering	3	2	1	0	50	100
49	CE	CET34 07	CET44 07	Multiphase Reaction Engineering	4	2	0	2	50	100
50	ES	ESP350 1	ESP450 1	Equipment Design and Drawing	4	2	0	4	50	100
51	S	ST	xxT4xx x	Special Elective - V	3	2	1	0	50	100
52	CE	CEP34 71	CEP44 71	Seminar	3	0	0	6	50	100
				TOTAL	20	1 0	3	1 2	30 0	600
IDT	6 /T12\									
IPI	6 (T13)									

	IP	IPP310	IPP410	In-Plant Training	8					
		6	6							
Stu	dy 8 (T1	4)								
		- 7		Subjects	Credit	Hrs	/wee	ek		
				-	S					
						L	Т	Р	E. S.	Total
53	CE	CET35 41	CET45 41	Advanced Transport Phenomena	3	2	1	0	50	100
54	CE	CET35 43	CET45 43	Advanced Mass Transfer	3	2	1	0	50	100
55	CE	CET35 43	CET45 43	Advanced Separation Processes	3	2	1	0	50	100
56	ES	EST350	EST450 1	LCA and Sustainability/ NPTEL/ MOOC	3	2	1	0	50	100
57	S	ST	xxT4xx x	Advanced Special Elective - VI	3	2	1	0	50	100
58	HU	HUT35 01	HUT45 01	Research Methodology	4	3	1	0	50	100
59	CE	CEP35 71	CEP45 71	Design / Research Project - I	4	0	0	8	50	100
				TOTAL	23	1 3	6	8	35 0	700
				Λ						
Stu	dy 9 (T1	.5)	ı		C 121		,			
				Subjects	Credit s	Hrs	/wee	€K		
				1/2		L	Т	Р	E. S.	Total
60	HU	HU340 2	HUT44 02	Perspectives of Society, Science and Technology	3	2	1	0	50	100
61	HU	HU350	HU450 1	Industrial Psychology and Management	3	2	1	0	50	100
62	CE	CET34 07	CET44 07	Advanced Chemical Reaction Engineering	3	2	1	0	50	100
63	CE	CEE3xx	CET4xx x	Advanced Chemical Eng. Elective	3	2	1	0	50	100
64	S	ST	xxT4xx x	Advanced Special Elective - VII	3	2	1	0	50	100
65	CE	CEP35 72	CEP45 72	Design / Research Project - II	9	0	0	1 8	50	100
				TOTAL	24	1 0	5	1 8	30 0	600

List of Minor Degrees and Minor Electives:

Lipids

SP #	Course Code (IOCB)	Course Code (MARJ)	Туре	List of Subjects
1		SLT430 2	Theory	Introduction to Lipid Technology
2		SLT430 3	Theory	Chemistry of Lipids and their applications
3		SLT440 3	Theory	Lipid Processing Technology I
4		SLT440 4	Theory	Production and Applications of Soaps, Surfactants and Detergents
5		SLT440 5	Theory	Lipid Processing Technology II
6		SLT450 6	Theory	Essential Oils and Cosmetics
7		SLT450 7	Theory	Technology of Oleochemicals
1		SFP430 1	Laborator y	Lipids Laboratory-I
2		SLP440 2	Laborator y	Lipids Laboratory-II

Foods

SP Course Code (Code (IOCB) (MARJ) 1 SFT320 SFT420 Theory Introduction to Food Technology 2 2 1 Theory Biochemistry/Microbiology 1 1 1 SFT340 SFT440 Theory Food Chemistry 3 3 4 SFT340 SFT440 Theory Food Processing and Technology I 4 5 SFT340 SFT440 Theory Food Ingredients and Additives 5 5 5 5 5 6 SFT350 SFT450 Theory Food Processing and Technology II 6 7 SFT350 SFT450 Theory Food Processing Science and Technology I 7 SFP330 SFP430 Laborator Food Analysis Laboratory 2 SFP340 SFP440 Laborator Food Processing Laboratory 5 Food Processing Laboratory 7 Food Processing Laboratory 9 Food Processing Laboratory 1 SFP330 SFP440 Laborator Food Processing Laboratory 2 SFP340 SFP440 Laborator Food Processing Laboratory				. \ /	
2 2 2 SFT330 SFT430 Theory Biochemistry/Microbiology 1 1 3 SFT340 SFT440 Theory Food Chemistry 3 3 4 SFT340 SFT440 Theory Food Processing and Technology I 4 5 SFT340 SFT440 Theory Food Ingredients and Additives 5 5 6 SFT350 SFT450 Theory Food Processing and Technology II 6 7 SFT350 SFT450 Theory Food Processing Science and Technology I 7 Theory Food Processing Science and Technology II 8 SFP330 SFP430 Laborator Food Analysis Laboratory 2 2 SFP340 SFP440 Laborator Food Processing Laboratory		Code	Code	Type	List of Subjects
1 1 3 SFT340 SFT440 Theory Food Chemistry 3 3 4 SFT340 SFT440 Theory Food Processing and Technology I 4 5 SFT340 SFT440 Theory Food Ingredients and Additives 5 5 6 SFT350 SFT450 Theory Food Processing and Technology II 6 6 7 SFT350 SFT450 Theory Food Packaging Science and Technology 7 7 1 SFP330 SFP430 Laborator Food Analysis Laboratory 2 9 2 SFP340 SFP440 Laborator Food Processing Laboratory	1			Theory	Introduction to Food Technology
3 3 4 SFT340 SFT440 Theory Food Processing and Technology I 4 4 5 SFT340 SFT440 Theory Food Ingredients and Additives 5 5 6 SFT350 SFT450 Theory Food Processing and Technology II 6 7 SFT350 SFT450 Theory Food Packaging Science and Technology 7 7 1 SFP330 SFP430 Laborator Food Analysis Laboratory 2 y 2 SFP340 SFP440 Laborator Food Processing Laboratory	2	SFT330 1	SFT430 1	Theory	Biochemistry/Microbiology
4 4 5 SFT340 SFT440 Theory Food Ingredients and Additives 5 5 6 SFT350 SFT450 Theory Food Processing and Technology II 6 6 7 SFT350 SFT450 Theory Food Packaging Science and Technology 7 7 1 SFP330 SFP430 Laborator Food Analysis Laboratory 2 y 2 SFP340 SFP440 Laborator Food Processing Laboratory	3		_ / %	Theory	Food Chemistry
5 5 6 SFT350 SFT450 Theory Food Processing and Technology II 6 6 7 SFT350 SFT450 Theory Food Packaging Science and Technology 7 7 1 SFP330 SFP430 Laborator Food Analysis Laboratory 2 y 2 SFP340 SFP440 Laborator Food Processing Laboratory	4		SFT440 4	Theory	Food Processing and Technology I
6 7 SFT350 SFT450 Theory Food Packaging Science and Technology 7 7 1 SFP330 SFP430 Laborator Food Analysis Laboratory 2 2 y 2 SFP340 SFP440 Laborator Food Processing Laboratory	5		SFT440 5	Theory	Food Ingredients and Additives
7 7 1 SFP330 SFP430 Laborator Food Analysis Laboratory 2 2 y 2 SFP340 SFP440 Laborator Food Processing Laboratory	6		(/)	Theory	Food Processing and Technology II
2 2 y 2 SFP340 SFP440 Laborator Food Processing Laboratory	7	SFT350 7	SFT450 7	Theory	Food Packaging Science and Technology
2 Strate Strate Laborator rockship Laboratory	1		SFP430 2	Laborator y	Food Analysis Laboratory
	2			Laborator y	Food Processing Laboratory

Pharmaceut icals

SP #	Course Code (IOCB)	Course Code (MARJ)	Туре	List of Subjects
1	SRT330 2	SRT430 2	Theory	Introduction to Pharmaceutical Technology
28	SFT320 1	SFT420 1	Theory	Biochemistry and Microbiology
/8,	SRT340 3	SRT440 3	Theory	Pharmaceutical Chemistry
4	SRT350 7	SRT450 7	Theory	Formulation Technology and Drug Delivery
5	SRT350 6	SRT450 6	Theory	Pharmaceutical Technology and Drug Design

6	SRT340 4	SRT440 4	Theory	Process Development for Fine Chemicals and API
7	SRT340 5	SRT440 5	Theory	Natural Product based Pharmaceuticals
1	SRP340 1	SRP440 1	Laborator y	Pharmaceutical Analysis Laboratory
2	SRP340 3	SRP440 3	Laborator y	Pharmaceutical Chemistry and Formulation Technology Laboratory

Energy

				' \/
SP #	Course Code (IOCB)	Course Code (MARJ)	Туре	List of Subjects
1	SET330 2	SET430 2	Theory	Conventional Energy and Utilization
2	SET330 3	SET430 3	Theory	Renewable Energy Systems
3	SET340 3	SET440 3	Theory	Combustion and Chemistry of Fuels
4	SET340 4	SET440 4	Theory	Energy Conversion and Storage
5	SET340 5	SET440 5	Theory	Advanced Thermodynamics of Energy Systems
6	SET350 6	SET450 6	Theory	Materials for Energy Applications
7	SET350 7	SET450 7	Theory	Energy Management
1	SEP330 1	SEP430 1	Laborator Y	Energy Lab-I
2	SEP340 2	SEP440 2	Laborator y	Energy Lab-II

Petroleum and Petrochemi cals

SP #	Course Code (IOCB)	Course Code (MARJ)	Туре	List of Subjects
1	SPT330 2	SPT430 2	Theory	Introduction to petroleum technology
2	SPT340 3	SPT440 3	Theory	Petroleum refining processes
3	SPT340 4	SPT440 4	Theory	Refinery engineering
4	SPT350 6	SPT450 6	Theory	Reservoir Technology
5	SPT340 5	SPT440 5	Theory	Petrochemicals technology
6	SPT350 7	SPT450 7	Theory	Industrial Catalysis
7	SPT350 8	SPT450 8	Theory	Petroleum economics and management
10	SPP340 2	SPP440 2	Laborator y	Petroleum Characterization Laboratory-I
26,	SPP340 3	SPP440 3	Laborator y	Petroleum Laboratory-II

Materials and Polymers

SP	Course	Course	Type	List of Subjects

#	Code (IOCB)	Code (MARJ)		
1	SMT32 01	SMT420 1	Theory	Introduction to Material Technology
2	SMT33 02	SMT430 2	Theory	Polymer science and Technology-I
3	SMT34 03	SMT440 3	Theory	Structure-Property Relationships
4	SMT34 04	SMT440 4	Theory	Polymer science and technology -ll
5	SMT34 05	SMT440 5	Theory	Materials processing
6	SMT35 06	SMT450 6	Theory	Nanomaterials
7	SMT35 07	SMT450 7	Theory	Functional materials
1	SMP33 03	SMP430 3	Laborator y	Materials Characterization Laboratory
2	SMP34 02	SMP440 2	Laborator y	Materials processing and characterization laboratory

Textiles

			^`	
SP #	Course Code (IOCB)	Course Code (MARJ)	Type 0	List of Subjects
1	STT320 1		Theory	Technology of Fibres and Polymers
2	STT330 2		Theory	Technology of Textile Dyeing
3	STT340 3		Theory	Technology of Textile Printing
4	STT340 4	,	Theory	Chemistry & Applications of Specialty Chemicals
5	STT340 5	C	Theory	Technology of Finishing
6	STT350 7	٠,٥	Theory	Effluent Characterisation and Treatment
7	STT350 6	2	Theory	High-tech and Industrial Fibres
1	STP340 1	, O	Laborator y	Analysis of Fibres and fabrics
2	STP340 2	8	Laborator y	Treatment of textiles

Detailed Syllabus

Stud	ly 1 (T1	.)								
Sr. No.	Type of cour se	IOCB Code (3)	Jalna Code (4)	Subjects	Credit s	Hrs	/We	ek		
					\bigcirc	L	Т	Р	E. S.	Total
1	BS	BST31 01	BST410 1	Chemistry - I	V 4	3	1	0	30	100
2	BS	BST31 02	BST410 2	Physics - I	4	3	1	0	30	100
3	BS	BST31 03	BST410 3	Mathematics-I	4	3	1	0	30	100
4	HU	HUT31 01	HUT41 01	Communication Skills/English	3	2	1	0	15	50
5	CE	CET31 01	CET410 1	Introduction to Chemical Engineering and Chemical Industries.	0	2	1	0	15	50
6	ES	ESP310 1	ESP410 1	Engineering Graphics-I	3	1	0	4	25	50
7	ES	ESP310 2	ESP410 2	Engineering Applications of Computers-I	2	0	0	4	25	50
8	BS	BSP31 01	BSP410 1	Chemistry Laboratory -I	2	0	0	4	25	50
				TOTAL	22	1 4	5	1 2	19 5	550

			No.	L	Т	Р	Tot
Course code			BST4101 V				
Course title			Chemistry I				
Scheme and			3 L: 1 T: 0 P 4 Credits				
Credits			.0				
Pre-			10+2 level chemistry				
requisites							
Objectives of	1		To incroduce the students to the fundamentals				
the course			of analytical chemistry				
	2		To understand different qualitative and				
			quantitative analytical techniques				
	3		nake the students understand				
		1	organometallic chemistry and its applications				
Detailed		\					
contents		Fa					
	1	Ó,	Analytical Chemistry	24	8		32
	1	У. ₁	Introduction to analytical Chemistry: Accuracy	24	8		32
	1	9.1 V	Introduction to analytical Chemistry: Accuracy precision, Errors, Qualitative and Quantitative	24	8		32
	1	8	Introduction to analytical Chemistry: Accuracy precision, Errors, Qualitative and Quantitative analysis, Analytical Perspective, Chemical	24	8		32
	1	8	Introduction to analytical Chemistry: Accuracy precision, Errors, Qualitative and Quantitative analysis, Analytical Perspective, Chemical concentrations. Good laboratory practices.	24	8		32
	1	1.1	Introduction to analytical Chemistry: Accuracy precision, Errors, Qualitative and Quantitative analysis, Analytical Perspective, Chemical concentrations. Good laboratory practices. Correlation between quality and analysis.	24	8		32
	1	8	Introduction to analytical Chemistry: Accuracy precision, Errors, Qualitative and Quantitative analysis, Analytical Perspective, Chemical concentrations. Good laboratory practices. Correlation between quality and analysis. Evaluation and validation of analytical	24	8		32
	1	1.2	Introduction to analytical Chemistry: Accuracy precision, Errors, Qualitative and Quantitative analysis, Analytical Perspective, Chemical concentrations. Good laboratory practices. Correlation between quality and analysis. Evaluation and validation of analytical methods.	24	8		32
	10,00	8	Introduction to analytical Chemistry: Accuracy precision, Errors, Qualitative and Quantitative analysis, Analytical Perspective, Chemical concentrations. Good laboratory practices. Correlation between quality and analysis. Evaluation and validation of analytical methods. Statistical treatment of analytical data and	24	8		32
	1	1.2	Introduction to analytical Chemistry: Accuracy precision, Errors, Qualitative and Quantitative analysis, Analytical Perspective, Chemical concentrations. Good laboratory practices. Correlation between quality and analysis. Evaluation and validation of analytical methods. Statistical treatment of analytical data and presentation of results.	24	8		32
	1	1.2	Introduction to analytical Chemistry: Accuracy precision, Errors, Qualitative and Quantitative analysis, Analytical Perspective, Chemical concentrations. Good laboratory practices. Correlation between quality and analysis. Evaluation and validation of analytical methods. Statistical treatment of analytical data and presentation of results. Conventional methods of analysis - Titrimetric	24	8		32
	1	1.2	Introduction to analytical Chemistry: Accuracy precision, Errors, Qualitative and Quantitative analysis, Analytical Perspective, Chemical concentrations. Good laboratory practices. Correlation between quality and analysis. Evaluation and validation of analytical methods. Statistical treatment of analytical data and presentation of results. Conventional methods of analysis - Titrimetric: Principles; Equivalence point and endpoint;	24	8		32
	1	1.2 1.3 1.4	Introduction to analytical Chemistry: Accuracy precision, Errors, Qualitative and Quantitative analysis, Analytical Perspective, Chemical concentrations. Good laboratory practices. Correlation between quality and analysis. Evaluation and validation of analytical methods. Statistical treatment of analytical data and presentation of results. Conventional methods of analysis - Titrimetric: Principles; Equivalence point and endpoint; detection of end point.	24	8		32
	1	1.2	Introduction to analytical Chemistry: Accuracy precision, Errors, Qualitative and Quantitative analysis, Analytical Perspective, Chemical concentrations. Good laboratory practices. Correlation between quality and analysis. Evaluation and validation of analytical methods. Statistical treatment of analytical data and presentation of results. Conventional methods of analysis - Titrimetric: Principles; Equivalence point and endpoint;	24	8		32

		1	Dahambiamashan			
		1.6	Potentiometer. Spectroscopic methods : Principle,			
		1.6				
			Instrumentation, Applications of UV-Vis			
			spectrophotometer and Atomic absorption			
			spectroscopy			
		1.7	Chromatographic separation methods:			
			General principle of chromatography,			
			classification of chromatographic techniques.			
			Principle, technique and applications of paper,			
			thin layer, Ion exchange chromatographic			
			techniques.			
		1.8	Modern Chromatographic Techniques : HPLC,			
		0	GC: Principle, Instrumentation, Applications,			
	2		Inorganic chemistry	6	2	8
		2.1	Organometallics: Metal-ligand bonding,	_	_	
		2.1	Concepts of sigma and pi bond formation.			
		2.2	types of ligands, CO and PPh ₃ lignads.			
		2.2	Basic reactions of organometallic compounds:			
			insertion, migration, oxidative addition,			
			reductive elimination. E.g. Wilkinsons,			
			Grignard Reagent etc.			
			Total	36	12	48
Suggested	1		Skoog and West's Fundamental of Analytical			
books			Chemistry, F. James Holler and Stanley R.			
			Crouch, Cengage Learning			
	2		Instrumental methods of Chemical Analysis,			
			E.W. Ewing, McGraw Hill.			
	3		Instrumental methods of analysis, D.A. Skoog			
			and D.M. Wes			
	4		Concise Inorganic Chemistry, J.D. Lee, Wiley			
	_		India Edition			
	5		Basic Inorganic Chemistry, F.A. Cotton and G.			
			Wilkinson, John Wiley and Sons			
	6		New Instrumental Methods in			
	"		Electrochemistry, P.D. Delaha			
	7		Radiochemistry and nuclear chemistry: G.R.			
	'		Choppin, J. Rydberg, J.O. Lilgenzin, C. Ekberg,			
0			AP			
Outcomes	601		Students will learn			
	CO1		Students will learn basic principles of			
			che nical analysis			
	CO2		Student will able to select chemical and			
		_	instrumental methods for qualitative and			
		7	quantitative analysis			
	CO3	4	Student will learn concept of organometallic			
		7	chemistry and its application in organic			
		30)	transformation			
Course code		1	BST4102			
Course title		O	Physics - I			
Scheme and		7,	3L: 1T: 0P 4 credits			
Credits	1		-			
Pre-	~		10+2 level Physics			
requisites	O,					
Objectives of	M	-	To understand basic concepts of Solids and			
the course	-V		Semiconductors, Fluid Mechanics, Optics and			
the course	O,		its applications and ultrasonics.			
	Day.		Detailed contents			
	1			0	2	12
	1	1 1	Solid State Physics	9	3	12
		1.1	Crystal structure of solids: unit cell, space			
			lattices and Brava is lattice, Miller indices,			
			direction sand crystallographic planes, Cubic			

Г		1	. I CCC DCC FCC			
		1.2	crystals: SSC,BCC,FCC,			
		1.2	Diamond cubic structure, hexagonal crystals:			
			HCP, atomic radius, packing fraction, Bragg's			
			law of x-ray diffraction, determination of			
			crystal structure using Bragg spectrometer,			
			liquid crystals: introduction, types, phases and			
			applications			
		1.3	Semiconductor Physics: Formation of energy			
			bands in solids, concept of Fermi level,			
		1.4	Classification of solids: conductor,			
			semiconductor and insulator, intrinsic and			
			extrinsic semiconductors, effect or doping,			
			mobility of charge carriers, conductivity, Hall			
			effect.			
	2		Fluid Mechanics	6	3	9
		2.1		0	3	9
		2.1	Basic concepts of density and pressure in a			
	-		fluid, ideal and real fluids			
		2.2	Pascal's law, absolute pressure and pressure			
			gauges			
		2.3	Basic concepts of surface tension and			
			buoyancy			
		2.4	Equation of continuity, Bernoulli's equation			
		2.5	Viscosity, Newton's Law of viscosity, non			
	<u></u>	<u></u>	newtonian fluids			
	3		Optics and Fibre Optics	6	3	9
		3.1	Diffraction: Introduction to interference and			
			example; concept of diffraction, Fraunhofer			
			and Fresnel diffraction Fraunhofer diffraction			
			at single slit, double slit, and multiple slits;			
			diffraction grating, characteristics of			
			diffraction grating and its applications,			
			magnification and resolution.			
	-	2.2				
		3.2	Polarisation Introduction, polarisation by			
			reflection, polarisation by double refraction,			
			scattering of light, circular and elliptical			
			polarisation, optical activity.			
		3.3	Fibre Optics: Introduction, optical fibre as a			
			dielectric wave guide: total internal reflection,			
			numerical aperture and various fibre			
			parameters, losses associated with optical			
			fibres, step and graded index fibres,			
			application of optical fibres.			
	4		Lasers	6	3	9
	-	41*	Introduction to interaction of radiation with			
		···- \	matter, principles and working of laser:			
		.\	population inversion, pumping, various			
		15.	modes, threshold population inversion, types			
		. V				
		X.	of laser: solid state, semiconductor, gas;			
		U	application of lasers, applications:			
		4.2	Introduction to interaction of radiation with			
	-	<u> </u>	matter, principles and working of laser			
	٠.0	4.3	population inversion, pumping, various			
	(modes, threshold population inversion			
	Ο,	4.4	types of laser: solid state,			
	NX.		semiconductor, gas			
	X	4.5	Holography and engineering applications			
1	7 5		Ultrasound	6	3	9
	*	5.1	Generation of ultrasound: mechanical,			
			electromechanical transducers			
		5.2	Propagation of ultrasound, attenuation,			
			velocity of ultrasound and parameters			
	1	1	. c. core or are account and parameters			

			affecting it measurement of velocity				
		5.3	affecting it, measurement of velocity Applications of ultrasound				
		ر. د	Total	33	15	0	48
			local	33	13	U	40
Suggested	1		Physics: Vols. I and II- D. Halliday and R.				
books	_		Resnick, Wiley Eastern.				
DOOKS	2		Lectures on Physics: Vols. I, II and III -R.P.				
	_		Feynman, R.B. Leighton and M. Sands, Narosa.				
	3		Concepts of Modern Physics A Beiser,				
			McGraw-Hill.				
	4		Introduction to Modern Optics - G.R. Fowles,				
	_		Dover Publications.				
	5		A Course of Experiments with LASERs- R. S.				
			Sirohi, Wiley Eastern.				
	6		Optical Fibre Communication - G. Keiser,				
			McGraw-Hill.				
	7		Optoelectronics –J. Wilson and J.F.B. Hawkes,				
	'		2nd ed, Prentice-HallIndia.				
	8		Ultrasonics: Methods and Applications-J.Blitz,				
	8		Butterworth.				
	9		Applied Sonochemistry -T. J. Mason and J.P.				
	9		Lorimer, Wiley VCH.				
Outcomes			Students will be able to				
outcomes	CO1		Understand structures of solids and				
	201		semiconductors, apply Bragg's law.				
	CO2		Apply Bernoulli equation in simple pipe flows.				
	CO3		Calculate resolving power of optical				
	COS		instruments.				
	CO4		Describe principles of optical fibre				
	CO4		communication.				
	CO5		Introduced to the principles of lasers, types of				
	CUS		lasers and applications.				
	C06		Understand application of acoustic cavitation				
	COB		of Chemical Engineering Processes				
			of Cheffical Engineering Processes				
Course code			BST4103				
Course title			Mathematics-I				
Scheme and			3 L: 1 T: 0 P 4 Credits				
Credits			5 El All OT 4 Cicults				
Pre-			10+2 level Mathematics				
requisites			2012 level riddicfilades				
Objectives of	1		To introduce basic concepts of Linear algebra				
the course	_		io included basic concepts of Linear algebra				
the course	2		Differential calculus				
	3	-	Integral calculus				
	4	١	Vector calculus				
	-	Fa.	Detailed contents				
	1	10	Differential calculus:	6	2		8
		λ.1	Higher order derivatives, Mean value		_		
		V	theorems, Taylor's theorem and error				
		U	calculations, convexity of functions, Local				
	~		Maxima/Minima.				
	.0	1.2	Functions of two or more variables, Limit and				
	-		continuity, Partial differentiation, Directional				
	O.		derivatives, Total derivatives, Chain Rules of				
	0,		partial derivatives, Taylor's theorem for				
1	120		multivariable functions and its application to				
1	X.		error calculations, Local and absolute				
			Maxima/Minima				
	2		Improper integrals, beta and gamma	6	2		8
			functions, differentiation under the integral	U			J
			sign, multiple integrals and its application,				
		L	sign, multiple integrals and its application,				

			Error function				
	3		Vector differential calculus	9	3		12
		3.1	Vectors in 2-Space and 3-Space: Systems of				
			linear equations, matrices and Gauss				
			elimination, Vectors in IRn, notion of linear				
			independence and dependence.				
		3.2	Inner Product (Dot Product), Vector Product				
		J.2	(Cross Product), Vector subspaces of IRn,				
			basis of a vector subspace., row space, null				
			space, and column space, rank of a matrix.				
		2.2	Determinants and rank of matrices.				
		3.3	Abstract vector spaces, linear				
			transformations, matrix of a linear				
			transformation, change of basis and similarity,				
			rank-nullity theorem and its applications				
		3.4	Vector and Scalar Functions and Fields,				
			Derivatives				
		3.5	Gradient of a scalar field, Directional				
			Derivative				
		3.6	Divergence of a vector field				
		3.7	Curl of a vector field				
	4		Inner product spaces, orthonormal bases,	5	2		7
			Gram-Schmidt orthogonalization process,				
			Eigenvalues and eigenvectors, characteristic				
			polynomials, eigenvalues of special matrices				
			(orthogonal, unitary, Hermitian, symmetric,				
			skew- symmetric, normal), Orthogonal				
			projection and its application to least methods				
			Diagonalization of matrices and its				
			applications stochastic matrices. Matrix				
			applications stochastic matrices, Matrix Factorization, Applications such as SVD, PCA				
			etc.				
	5		Vector integral calculus	7	3		10
		5.1	Line Integrals, Path Independence of Line				
		3.1	Integrals				
		5.2	Green's Theorem in the Plane				
		5.3	Stokes' theorem and Surface Integrals				
		5.4	Divergence theorem and volume integral				
	6	J.4	First-Order ODEs-Introduction, formation and	2	1		3
	"		solutions of 1st order ODEs	_	-		,
		-	Total	35	13	0	48
Suggested	1		Advanced Engineering Mathematics, Erwin	33	13	J	+0
books			Kreyszig, John-Wiley.				
DOURS	2	-	Advanced Engineering Mathematics S. R. K.				
	_	- 1	lyengar, R. K. Jain, Narosa.				
	3	1	Vector Calculus 4 th Edition by Susane Jane				
	, s	Fa.	Colly, Pearson				
	4	V,	Advanced Engineering Mathematics by D. S.				
	4	X.	Zill and W. S. Right, Jones & Bartlett Student				
		,U	, ,				
	-	0	Edition, 2011.				
	5 🗸		Textbook of Engineering Mathematics, N. P.				
	٠.0	1	Bali and Dr. Manish Goyal, 8/e, Laxmi				
	10		Publications, New Delhi				
Outcomes	Ο,		Students will be able to solve problems				
	Δ_{χ}		related to				
	(01		Matrix and vector operations				
1	CO2		Differential and integral calculus				
	CO3		Vector calculus and applications				

Course code	ESP4101		

Course title		Engineering Graphics-I				
Scheme and		1 L: 1 T: 4 P 3 Credits				
Credits						
Pre-		10+2 level chemistry				
requisites		,				
Objectives of	1	Students will be able to understand different				
the course		drawing view, assembly and working of				
		different machines parts and understanding				
		and preparing Computer aided drawings				
		Detailed contents				
	1	Orthographic views : Lines used, selection of	3		9	12
		views, spacing of views. ISI conventions used				
		In drawing , dimensioning and sections.				
		Drawing required views from given pictorial				
		views (conversion of pictorial views in to				
		orthographic views).				
	2	Isometric projections : Isometric scale,	3		9	12
		Isometric projections and sometric views /				
		drawings. Circles in isometric view. Isometric				
		views of simple solids and objects.				
	3	Missing Views : Reading and understanding	3		9	12
		drawing views, Drawing third view when two				
		views are given.				
	4	Introduction to Assembly and detailed	3		9	12
		drawing. Preparation of assembly drawing				
		from detailed drawing and vice versa.				
		Assembly such as Plummer block, Stuffing box				
		, valves and pipe joints etc.				
	5	Introduction to solid works software for	3		9	12
		preparing part drawings, assembly drawings				
		and drawing views.				
		Takal				
		Total	15	0	45	60
Suggested		lotal	15	0	45	60
Suggested books		()°	15	0	45	60
	1	N. D. Bhatt, Engineering Drawing, Charotor	15	0	45	60
		N. D. Bhatt, Engineering Drawing, Charotor Publication House, Bombay	15	0	45	60
	1 2	N. D. Bhatt, Engineering Drawing, Charotor Publication House, Bombay W. J. Luzadder, Fundamentals of Engineering	15	0	45	60
	2	N. D. Bhatt, Engineering Drawing, Charotor Publication House, Bombay W. J. Luzadder, Fundamentals of Engineering Drawing, Prentice Hall of India.		0	45	60
		N. D. Bhatt, Engineering Drawing, Charotor Publication House, Bombay W. J. Luzadder, Fundamentals of Engineering Drawing, Prentice Hall of India.		0	45	60
	2	N. D. Bhatt, Engineering Drawing, Charotor Publication House, Bombay W. J. Luzadder, Fundamentals of Engineering Drawing, Prentice Hall of India. N. D. Bhatt, Machine Drawing, Charotor Publication House, Bombay		0	45	60
	2	N. D. Bhatt, Engineering Drawing, Charotor Publication House, Bombay W. J. Luzadder, Fundamentals of Engineering Drawing, Prentice Hall of India. N. D. Bhatt, Machine Drawing, Charotor Publication House, Bombay K. Venugopal, Engineering Drawing and		0	45	60
	3	N. D. Bhatt, Engineering Drawing, Charotor Publication House, Bombay W. J. Luzadder, Fundamentals of Engineering Drawing, Prentice Hall of India. N. D. Bhatt, Machine Drawing, Charotor Publication House, Bombay K. Venugopal, Engineering Drawing and Graphics, New Age Publication		0	45	60
	2	N. D. Bhatt, Engineering Drawing, Charotor Publication House, Bombay W. J. Luzadder, Fundamentals of Engineering Drawing, Prentice Hall of India. N. D. Bhatt, Machine Drawing, Charotor Publication House, Bombay K. Venugopal, Engineering Drawing and Graphics, New Age Publication R. K. Dhawan, A text book of Engineering		0	45	60
	3 4 5	N. D. Bhatt, Engineering Drawing, Charotor Publication House, Bombay W. J. Luzadder, Fundamentals of Engineering Drawing, Prentice Hall of India. N. D. Bhatt, Machine Drawing, Charotor Publication House, Bombay K. Venugopal, Engineering Drawing and Graphics, New Age Publication R. K. Dhawan, A text book of Engineering Drawing, S. Chand and Co.		0	45	60
	3	N. D. Bhatt, Engineering Drawing, Charotor Publication House, Bombay W. J. Luzadder, Fundamentals of Engineering Drawing, Prentice Hall of India. N. D. Bhatt, Machine Drawing, Charotor Publication House, Bombay K. Venugopal, Engineering Drawing and Graphics, New Age Publication R. K. Dhawan, A text book of Engineering Drawing, S. Chand and Co. K. L. Narayana, Machine Drawing, New Age		0	45	60
	2 3 4 5	N. D. Bhatt, Engineering Drawing, Charotor Publication House, Bombay W. J. Luzadder, Fundamentals of Engineering Drawing, Prentice Hall of India. N. D. Bhatt, Machine Drawing, Charotor Publication House, Bombay K. Venugopal, Engineering Drawing and Graphics, New Age Publication R. K. Dhawan, A text book of Engineering Drawing, S. Chand and Co. K. L. Narayana, Machine Drawing, New Age Publication		0	45	60
	3 4 5	N. D. Bhatt, Engineering Drawing, Charotor Publication House, Bombay W. J. Luzadder, Fundamentals of Engineering Drawing, Prentice Hall of India. N. D. Bhatt, Machine Drawing, Charotor Publication House, Bombay K. Venugopal, Engineering Drawing and Graphics, New Age Publication R. K. Dhawan, A text book of Engineering Drawing, S. Chand and Co. K. L. Narayana, Machine Drawing, New Age Publication N. B. Shaha and B. C. Rana, Engineering		0	45	60
books	2 3 4 5	N. D. Bhatt, Engineering Drawing, Charotor Publication House, Bombay W. J. Luzadder, Fundamentals of Engineering Drawing, Prentice Hall of India. N. D. Bhatt, Machine Drawing, Charotor Publication House, Bombay K. Venugopal, Engineering Drawing and Graphics, New Age Publication R. K. Dhawan, A text book of Engineering Drawing, S. Chand and Co. K. L. Narayana, Machine Drawing, New Age Publication		0	45	60
	2 3 4 5	N. D. Bhatt, Engineering Drawing, Charotor Publication House, Bombay W. J. Luzadder, Fundamentals of Engineering Drawing, Prentice Hall of India. N. D. Bhatt, Machine Drawing, Charotor Publication House, Bombay K. Venugopal, Engineering Drawing and Graphics, New Age Publication R. K. Dhawan, A text book of Engineering Drawing, S. Chand and Co. K. L. Narayana, Machine Drawing, New Age Publication N. B. Shaha and B. C. Rana, Engineering Drawing, Pearson Education.		0	45	60
books	2 3 4 5 6 7	N. D. Bhatt, Engineering Drawing, Charotor Publication House, Bombay W. J. Luzadder, Fundamentals of Engineering Drawing, Prentice Hall of India. N. D. Bhatt, Machine Drawing, Charotor Publication House, Bombay K. Venugopal, Engineering Drawing and Graphics, New Age Publication R. K. Dhawan, A text book of Engineering Drawing, S. Chand and Co. K. L. Narayana, Machine Drawing, New Age Publication N. B. Shaha and B. C. Rana, Engineering Drawing, Pearson Education.		0	45	60
books	2 3 4 5 6 7	N. D. Bhatt, Engineering Drawing, Charotor Publication House, Bombay W. J. Luzadder, Fundamentals of Engineering Drawing, Prentice Hall of India. N. D. Bhatt, Machine Drawing, Charotor Publication House, Bombay K. Venugopal, Engineering Drawing and Graphics, New Age Publication R. K. Dhawan, A text book of Engineering Drawing, S. Chand and Co. K. L. Narayana, Machine Drawing, New Age Publication N. B. Shaha and B. C. Rana, Engineering Drawing, Pearson Education. Students will be able to Different drawing views and its interpretation.		0	45	60
books	2 3 4 5 6 7	N. D. Bhatt, Engineering Drawing, Charotor Publication House, Bombay W. J. Luzadder, Fundamentals of Engineering Drawing, Prentice Hall of India. N. D. Bhatt, Machine Drawing, Charotor Publication House, Bombay K. Venugopal, Engineering Drawing and Graphics, New Age Publication R. K. Dhawan, A text book of Engineering Drawing, S. Chand and Co. K. L. Narayana, Machine Drawing, New Age Publication N. B. Shaha and B. C. Rana, Engineering Drawing, Pearson Education. Students will be able to Different drawing views and its interpretation. Assembly of different machine parts and its		0	45	60
books	2 3 4 5 6 7 CO1 CO2	N. D. Bhatt, Engineering Drawing, Charotor Publication House, Bombay W. J. Luzadder, Fundamentals of Engineering Drawing, Prentice Hall of India. N. D. Bhatt, Machine Drawing, Charotor Publication House, Bombay K. Venugopal, Engineering Drawing and Graphics, New Age Publication R. K. Dhawan, A text book of Engineering Drawing, S. Chand and Co. K. L. Narayana, Machine Drawing, New Age Publication N. B. Shaha and B. C. Rana, Engineering Drawing, Pearson Education. Students will be able to Different drawing views and its interpretation. Assembly of different machine parts and its working.		0	45	60
books	2 3 4 5 6 7	N. D. Bhatt, Engineering Drawing, Charotor Publication House, Bombay W. J. Luzadder, Fundamentals of Engineering Drawing, Prentice Hall of India. N. D. Bhatt, Machine Drawing, Charotor Publication House, Bombay K. Venugopal, Engineering Drawing and Graphics, New Age Publication R. K. Dhawan, A text book of Engineering Drawing, S. Chand and Co. K. L. Narayana, Machine Drawing, New Age Publication N. B. Shaha and B. C. Rana, Engineering Drawing, Pearson Education. Students will be able to Different drawing views and its interpretation. Assembly of different machine parts and its			45	60
Outcomes	2 3 4 5 6 7 CO1 CO2	N. D. Bhatt, Engineering Drawing, Charotor Publication House, Bombay W. J. Luzadder, Fundamentals of Engineering Drawing, Prentice Hall of India. N. D. Bhatt, Machine Drawing, Charotor Publication House, Bombay K. Venugopal, Engineering Drawing and Graphics, New Age Publication R. K. Dhawan, A text book of Engineering Drawing, S. Chand and Co. K. L. Narayana, Machine Drawing, New Age Publication N. B. Shaha and B. C. Rana, Engineering Drawing, Pearson Education. Students will be able to Different drawing views and its interpretation. Assembly of different machine parts and its working. Computer aided drawing.			45	60
Outcomes Course code	2 3 4 5 6 7 CO1 CO2	N. D. Bhatt, Engineering Drawing, Charotor Publication House, Bombay W. J. Luzadder, Fundamentals of Engineering Drawing, Prentice Hall of India. N. D. Bhatt, Machine Drawing, Charotor Publication House, Bombay K. Venugopal, Engineering Drawing and Graphics, New Age Publication R. K. Dhawan, A text book of Engineering Drawing, S. Chand and Co. K. L. Narayana, Machine Drawing, New Age Publication N. B. Shaha and B. C. Rana, Engineering Drawing, Pearson Education. Students will be able to Different drawing views and its interpretation. Assembly of different machine parts and its working. Computer aided drawing.		0	45	60
Outcomes Course code Course title	2 3 4 5 6 7 CO1 CO2	N. D. Bhatt, Engineering Drawing, Charotor Publication House, Bombay W. J. Luzadder, Fundamentals of Engineering Drawing, Prentice Hall of India. N. D. Bhatt, Machine Drawing, Charotor Publication House, Bombay K. Venugopal, Engineering Drawing and Graphics, New Age Publication R. K. Dhawan, A text book of Engineering Drawing, S. Chand and Co. K. L. Narayana, Machine Drawing, New Age Publication N. B. Shaha and B. C. Rana, Engineering Drawing, Pearson Education. Students will be able to Different drawing views and its interpretation. Assembly of different machine parts and its working. Computer aided drawing. HUT4101 Communication Skills			45	60
Outcomes Course code	2 3 4 5 6 7 CO1 CO2	N. D. Bhatt, Engineering Drawing, Charotor Publication House, Bombay W. J. Luzadder, Fundamentals of Engineering Drawing, Prentice Hall of India. N. D. Bhatt, Machine Drawing, Charotor Publication House, Bombay K. Venugopal, Engineering Drawing and Graphics, New Age Publication R. K. Dhawan, A text book of Engineering Drawing, S. Chand and Co. K. L. Narayana, Machine Drawing, New Age Publication N. B. Shaha and B. C. Rana, Engineering Drawing, Pearson Education. Students will be able to Different drawing views and its interpretation. Assembly of different machine parts and its working. Computer aided drawing.			45	
Outcomes Course code Course title Scheme and Credits	2 3 4 5 6 7 CO1 CO2	N. D. Bhatt, Engineering Drawing, Charotor Publication House, Bombay W. J. Luzadder, Fundamentals of Engineering Drawing, Prentice Hall of India. N. D. Bhatt, Machine Drawing, Charotor Publication House, Bombay K. Venugopal, Engineering Drawing and Graphics, New Age Publication R. K. Dhawan, A text book of Engineering Drawing, S. Chand and Co. K. L. Narayana, Machine Drawing, New Age Publication N. B. Shaha and B. C. Rana, Engineering Drawing, Pearson Education. Students will be able to Different drawing views and its interpretation. Assembly of different machine parts and its working. Computer aided drawing. HUT4101 Communication Skills O L: O T: 4 P 2 Credits			45	60
Outcomes Course code Course title Scheme and	2 3 4 5 6 7 CO1 CO2	N. D. Bhatt, Engineering Drawing, Charotor Publication House, Bombay W. J. Luzadder, Fundamentals of Engineering Drawing, Prentice Hall of India. N. D. Bhatt, Machine Drawing, Charotor Publication House, Bombay K. Venugopal, Engineering Drawing and Graphics, New Age Publication R. K. Dhawan, A text book of Engineering Drawing, S. Chand and Co. K. L. Narayana, Machine Drawing, New Age Publication N. B. Shaha and B. C. Rana, Engineering Drawing, Pearson Education. Students will be able to Different drawing views and its interpretation. Assembly of different machine parts and its working. Computer aided drawing. HUT4101 Communication Skills			45	
Outcomes Course code Course title Scheme and Credits Pre-requisites	2 3 4 5 6 7 CO1 CO2	N. D. Bhatt, Engineering Drawing, Charotor Publication House, Bombay W. J. Luzadder, Fundamentals of Engineering Drawing, Prentice Hall of India. N. D. Bhatt, Machine Drawing, Charotor Publication House, Bombay K. Venugopal, Engineering Drawing and Graphics, New Age Publication R. K. Dhawan, A text book of Engineering Drawing, S. Chand and Co. K. L. Narayana, Machine Drawing, New Age Publication N. B. Shaha and B. C. Rana, Engineering Drawing, Pearson Education. Students will be able to Different drawing views and its interpretation. Assembly of different machine parts and its working. Computer aided drawing. HUT4101 Communication Skills O L: O T: 4 P 2 Credits 10+2 English			45	

		skills are required in all courses				
		Detailed contents				
	1	Introduction to communication skills	5	3		
	2	Writing Skills: Technical report writing, scientific paper writing, Review paper writing, letter drafting, email writing, Resume Writing, Job Application/ Cover Letter Writing, etc.	5	3		
	3	Speaking Skills: Presentation skills- Planning and Preparation; Use of Body Language; Dealing with Mental Blocks & Stage Fright	5	3		
	4	Use of audio-visual facilities like powerpoint, LCD. for making effective oral presentation.	5	3		
	5	Group Discussions	2	1		
		Total	0	0	0	36
Suggested books		Elements of Style – Strunk and white				
		Raman, Meenakshi and Sangeeta Sharma. Technical Communication. New Delhi: Oxford University Press. 2018.				
		Sharma, S. D. A Textbook of Scientific and Technical Communication Writing for Engineers and Professionals. New Delhi: Sarup and Sons. 2007				
		, 0				
Outcomes		Students will learn				
	CO1	Students should be able to write grammar error free technical reports in MS Words or equivalent software.				
	CO2	Students should be able to make power point slides in MS PowerPoint or equivalent software.				
		~~				

Course code			BSP4101 C				
Course title			Chemistry Lab-I				
Scheme and			0 L: 0 T: 4 P 2 Credits				
Credits			()				
Pre-			10+2 level chemistry				
requisites			. ()				
Objectives of	1		To learn to prepare standard solutions and				
the course			volumetric titration				
	2		To learn the quality and quantitative of a				
			sample through different analytical methods				
	3		To learn to collect, collate, and interpret				
			results				
			C				
Detailed			*	0	0	48	
contents			K .				
	1	7	Preparation and standardization of volumetric				
		10	solutions.				
	2	, Y	Potentiometric titration: (i) Determination of				
		0	the strength of weak and strong acids in a				
		0,T	mixture of acids.				
	3 \	_	Conductometric titration: Determination of				
	^	1	total dissolved sulphate in water sample				
	40		Use of pH meter- (i) Use of a pH meter to				
	V),		determine dissociation constant of an acid,				
	ΛX		isoelectric point of an amino acid.				
	X 5		UV-Vis spectroscopy: i) to find out the				
'	γ.		absorption maxima, ii) Beers Lambert Law				
	,		verification and iii) concentration of a				
			substance from a given sample.				
	6		Separation of compounds by Thin layer				
			chromatography.				

Suggested books		Sandeep Nagar, Introduction to Python for Engineers and Scientists. Open Source				
C		Total	0	0	48	36
	6	GUI with Python			4	
7	20	and nonlinear equations and single variable calculus.				
_	0,	problems related to matrices, solutions linear			0	
	0	Matplotlib Use of Numpy, Scipy and Sympy to solve			8	
	40	Plotting graphs in various format using	0	0	4	4
	3 1	Algorithm development, arrays, matrices, and matrix algebra	0	0	8	8
		File management.				
		Dealing with strings, Lists, tuples, Dictionaries				
		Functions and Modules, Object Oriented Programing				
		case, etc.) and Loops			12	14
	2	nodules Logical operators, Control Flow (if-else, switch		0	12	12
		and expressions, Use of python as an advanced scientific calculator with math and cmath				
		Data types, variables, mathematical operations				
		Brief introduction to Python, Installation of python and Anaconda				
	-	languages.	U	U	12	12
contents	1	Introduction to computer programming	0	0	12	12
Detailed		the theory				
		writing computer programs and algorithm development involving problems discussed in				
		programming languages and the logic for				
the course	•	computers for scientific calculations, use of				
Pre-requisites Objectives of	1	10+2 level Mathematics To make students familiar with the use of				
Credits		1				
Course title Scheme and		Engineering Applications of Computers-I 0 L: 0T: 4 P 2 Credits				
Course title		ESP4102 Engineering Applications of Computers I				
-		٨				
		experimental work in oral and written formats.				
	CO4	chromatographic techniques Able to clearly communicate the results of				
		analysis of given sample using				
	CO3	Able to perform qualitative and quantitative				
	CU2	analyte determination				
	CO2	solutions Able to plan simple analytical experiments for				
	CO1	Able to prepare and standardized analytical				
Outcomes		Students will be able to				
Outcomes		Total	0	0	48	48
		the like.				
		Example: caffeine (food products), vitamin C, paracetamol (pharmaceutical product), and				
		ingredient in a marketed product, for				
		Determining the concentration of an active				
	8	High pressure liquid Chromatography (HPLC)				
		(ii) Qualitative Analysis of Hydrocarbon by Gas Chromatography				
		organic compound in a suitable solvent.				
	7	Gas Chromatography: (i) Determination of concentration of a known				

		Solutions for Numerical Computation-Apress		
		(2018)		
		Reema Thareja, Python Programming: Using		
		Problem Solving Approach, Oxford University		
		Press. 2017		
		Fangoh, Introduction to Python for		
		Computational Science and Engineering, Open		
		Source, available on github.		
Outcomes		Students will able to		
	CO1	use of Numpy, Scipy and Sympy to solve		
		problems related to matrices, solutions linear		
		and nonlinear equations and single variable		
		calculus.		
	CO2	11 11 11		
	C02			
		mathematical and numercial problems.		

Stu	dy 2 (T2)								
			Code	Subjects	Credit s	Hrs	/wee	ek		
						L	Т	Р	E. S.	Total
9	BS	BST31 04	BST410 4	Chemistry-II	4	3	1	0	50	100
10	BS	BST31 05	BST410 5	Physics -II	3	2	1	0	50	100
11	BS	BST31 06	BST410 6	Mathematics-II	4	3	1	0	50	100
12	CE	CET31 02	CET41 02	Material & Energy Balance Calculations	4	3	1	0	50	100
13	CE	CET31 03	CET41 03	Chemical Engineering Thermodynamics - I	3	2	1	0	50	100
14	HU	HUP31 01	HUP41 01	Chemistry Laboratory-II	2	0	0	4	50	100
15	BS	BSP31 02	BSP410 2	Engineering Applications of Computers-II	3	1	0	4	50	100
16	ES	ESP310 2	ESP410 2	Physics Laboratory	2	0	0	4	50	100
				TOTAL	25	1 4	5	1 2	40 0	800

		/	L	Т	Р	Tot
Course code		BST4104				
Course title		Chemistry II				
Scheme and		3 L: 1 T: 0 P 4 Credits				
Credits		~~				
Pre-		10+2 level chemistry				
requisites		N N				
Objectives	1	To train the students in understanding the				
of the		reactivity and mechanism of organic				
course		reactions				
	2	To train students for differentiate the				
		organic symmetric and asymmetric				
	_	compounds				
	3	To understand the well-known name				
		reactions and its applications in Industry.				
	4	To determine the structures of unknown				
Carriage Hills		compounds using spectroscopic methods				
Course title	-	Detailed contents	-	1	0	A
Chemistry-II	1	UPAC nomenclature of organic compounds	3		U	4
	2	Stereochemistry:	5	2	0	7
		2.1 Stereodescriptors: R, S, E, Z.	Э		0	/
		Enantiomers and Diastereomers.				
		2.2 Racemates and their resolution.				
		2.3 Conformations of cyclic and acyclic				
		systems.				
		2.4 Introduction to chiral synthesis				
	3.0	Reactivity of organic molecules:	10	2		12
	- 1/4	3.1 Structures and Chemical bonding, FMO		_		
	V,	3.2 Factors influencing acidity, basicity,				
	×	and reactivity of organic compounds.				
	·Q.	3.3 Kinetic vs. thermodynamic control of				
	Do	reactions				
	,	3. 4 Principles of mechanism of organic				
		reactions: intermediates, EPD.				
	4	4.1 Aromaticity of carbocyclic and	8	2		10
		heterocyclic compounds structure and				
		reactions				

1							
			4.2 Mechanism of electrophilic and				
			nucleophilic aromatic substitution				
			reactions				
			4.3 Orienting influence of substituents.				
	5		5.1 Friedel-Crafts and related reactions	4	2		6
			Gatterman,-Koch, Hoesch Reaction				
	6		6.1 Polymerization of olefins, characteristic	2			2
			properties of polymers				
	7		Organic Molecules Characterizations by	4	2		6
		7.1	NMR, 1H NMR				
		7.2	IR V				
		7.3	Mass Spectrometry				
			Simple NMR, Mass spectra and IR				
			combined make quick identification				
			possible				
			Total	36	12		48
Suggested books	1		Organic chemistry – T. W. G Solomons, C. B. Fryhle, John Wiley and Sons				
DOOKS	2		Organic chemistry, Clayden, Greeves,				
			Warren, Oxford publication				
	3		Organic Chemistry, Paula Y Bruce, Pearson				
	3		Education				
	4		March's Advanced Organic Chemistry:				
	•		Reactions, Mechanisms, and Structure 7				
			Edition (English, Paperback, Michael B.				
			Smith)				
Outcomes			Students will be able to solve				
Gutcomes			problems related to				
	CO1		Draw the chemical structures of organic				
			molecules.				
	CO2		Determine the reactivity of organic				
			compounds				
	CO3		Draw the 3D structures and				
			stereochemistry of organic compounds				
	CO4		Solve the problems of how reaction takes				
			place.				
	CO5		Write simple reaction mechanisms and				
			justify the product				
	CO6		Find out the structures of unknown				
			compound by using spectroscopic method			<u>L</u> _	
			. 07				
			λ				
			0	L	Т	Р	Tot
Course code			B5174105				
Course title			Physics - II				
Scheme and			2L: 1T: 0P 3 credits				
Credits		6	1				
Pre-			10+2 level Physics				
requisites		0					
Objectives		7	To understand dual nature of matter,				
of the		.0	applications, properties of materials in				
course		0	engineering and processes.				
		7_	Detailed contents				
	1 0	\"	Quantum Mechanics				
	10	1	Introduction to quantum physics blackbody	7	2		9
	Δ,		radiation, explanation using the photon				
	VX.		concept, photoelectric effect, Compton				
	2		effect, deBroglie hypothesis, wave-particle				
	Δ.,		duality, Born's interpretation of the wave				
	,		function, verification of matter waves,				
			uncertainty principle, Schrodinger wave				
			equation, particle in box, quantum				
			harmonic oscillator, hydrogen atom (no				
			detailed derivation), tunneling effect and				

	1						
			scanning tunneling microscopy, probe				
	2		microscopy				
			Electromagnetism	7	2		9
			Introduction to the 'del' operator and	'	2		9
			vector calculus, revision of the laws of				
			electrostatics, electric current and the				
			continuity equation, revision of the laws of				
			magnetism.				
	3		Dielectric Properties of Materials	_			_
			Polarisation, permeability and dielectric	4	2		6
			constant, polar and non-polar dielectrics,				
			internal fields in a solid, Clausius-Mossotti				
			equation, applications of dielectrics.				
	4		Magnetic Properties of Materials	_			
			Magnetisation, permeability and	4	2		6
			susceptibility, classification of magnetic				
			materials, ferromagnetism, magnetic				
	<u> </u>		domains and hysteresis, applications.				
	5	ļ	Superconductivity	_			
			Introduction of the superconductivity,	4	2		6
			behavior of perfect conductor, Meisner				
			effect, London penetration depth, Heat				
			capacity, Isotope effect, the BCS theory,				
			Type-I superconductor, Type-II				
			superconductor, Josephson Effect,				
			Application, Josephson junction switch,				
			Squids.	2.5			
6			Total	26	10	0	36
Suggested			1) Physics: Vols. I and II- D. Halliday and R.				
reference			Resnick, Wiley Eastern.				
books			2) Lectures on Physics: Vols. I, II and III –				
			R.P. Feynman, R.B. Leighton and M. Sands,				
			Narosa.				
			3) Concepts of Modern Physics- A. Beiser,				
			McGraw-Hill				
			4) Introduction to Electrodynamics - D. J.				
			Griffiths, 1999, Person Education.				
			5) Foundations of Electromagnetic Theory -				
			Reitz, John R.; Milford, Frederick J.; Christy,				
			Robert W. (2008), Addison Wesley. 6) Fundamentals of Modern Physics, Robert				
			Martin Eisberg, 1961, John Wiley.				
			7) A Textbook of Engineering Physics, MN				
			Avadhanulu, PG Kshirsagar, TVS				
Outcomes	-		Arunmurthy, S. Chand.				
Outcomes	CO1		Students will be able to Perform simple quantum mechanics				
	(01	4	Perform simple quantum mechanics calculations.				
	CO2	-	Define various terms related to properties				
	002	1					
		1	of materials such as, permeability, polarization, etc.				
	CO3	0	Understand the phenomenon of				
	203	0,	· •				
		\\	superconductivity and types of superconductor				
	- 6	7	Superconductor	L	Т	Р	Tot
Course seds	- 1	/	BST4106	L		-	Tot
Course title	~						
Course title	N	-	Mathematics-II				
Scheme and	0,		3 L: 1 T: 0 P 4 Credits				
Credits	00	-	10 - 2 Mathamatica				
Pre-	1		10+2 Mathematics				
wowic!tcc							
requisites	-		To introduce basis sensents and sense				
Objectives	1		To introduce basic concepts and some				
	1		To introduce basic concepts and some solution techniques of linear ordinary and partial differential equations				

		To introduce consent of since values and		1		
	2	To introduce concept of eigen values and eigen vectors				
	3	To introduce concept of integral transforms				
		and solution of some linear ordinary and				
		partial differential equations				
		Detailed contents				
	1	Higher-Order Linear ODEs:	9	3		12
		Homogeneous / Non-homogeneous linear				
		ODEs of second and higher order with constant coefficients.				
		Concepts of initial and boundary value				
		problems and some applications.				
		Wronskian, fundamental solution, basis,				
		linear dependence and independence of				
		solutions.				
		Solution by Variation of Parameters.				
	2	Euler-Cauchy Equations Series Solutions of ODEs and Special	9	3		12
		Functions: Power Series Method	9	3		12
		(Frobinuous method)-Legendre's Equation,				
		Legendre Polynomials, Bessel's Equation,				
		Bessel Functions, Orthogonal and				
	<u> </u>	Orthonormal Functions				
	3	Eigenvalues, Eigenfunctions, Applications	3	1		4
		of Eigenvalue problems, Symmetric, Skew-				
		symmetric and Orthogonal matrices, Sturm-Liouville Problems				
	4	Partial Differential Equations :	6	2		8
	-	Origin of partial differential equations,		_		
		Classification of first order PDE.				
		Solution of some first order PDEs-				
		Lagrange's method.				
		Classification of second order PDE and				
		their solutions by Separation of Variables (Parabolic, Eliptic, Hyperbolic)				
	5	Transforms :	8	4		12
		Laplace Transforms, Fourier Series and		_		
		Transform, z-transforms				
		Application of transforms to ODE and PDE				
		Total	35	13	0	48
Suggested		Advanced Engineering Mathematics, Erwin				
reference		Kreyszig, John-Wiely.				
books		Advanced Engineering Mathematics S. R. K. Iyengar, R. K. Jain, Narosa				
Suggested		• Elements of Partial Differential Equations				
reference		by I. N. Sneddon, Dover Publications, INC.				
books		2006				
		• An Introduction to Ordinary Differential				
		Equations by Earl A. Coddington, Dover				
		Publications • Advanced Engineering Mathematics by				
		Advanced Engineering Mathematics by D. S. Zill and W. S. Right, Jones & Bartlett				
		Student Edition, 2011.				
		• William E. Boyce, Richard C. DiPrima,				
	Ċ	Elementary Differential Equation, Wiley				
Outcomes	10	Students will be able to solve				
	COT	first and second order ODE by Analytical				
	VZ	methods				
	C02	second order ODEs by power series				
	CO3	methods. linear first and second order PDE by				
	103	Analytical methods				
	CO4	ODE's and PDE's by using Laplace and				
		Fourier Transforms.				
		, -				

Course code	Ι	1 1	CET4102				
Course title			Material and Energy Balance				
Course title			Calculations				
Scheme and Credits			3L: 1T: 0P 4 credits				
Pre- requisites			XIIth Standard Mathematics, Chemistry, Physics, Applied Mathematics – I, Organic Chemistry – I, Applied Physics – I, Analytical Chemistry,				
Objectives of the course	1		This is a basic Chemical Engineering Course. This knowledge will be required in ALL subjects later on.				
	1		Introduction to Chemical Engineering: Chemical Process Industries, Chemistry to Chemical Engineering, Revision of Units	2	1		3
	2		and Dimensions Mole concept, composition relationship and Stoichiometry, Behaviour of gases and vapors	3	1		
	3		Material balances for reacting and non- reacting chemical and biochemical systems including recycle, bypass and purge	12	4		
	4		Introduction to psychrometry humidity and air-conditioning calculations.	8	2		
	5		Introduction to Energy Balances, Energy Balances in systems with and without reactions	8	2		
	6		Unsteady State Material and Energy Balances	3	2		5
			Total	36	12	0	48
Suggested booksreferen ce			 Chemical Process Principles, Hougen O.A., Watson K. M. Basic Principles and Calculations in Chemical Engineering, Himmelblau, Stoichiometry, Bhatt B.I. and Vora S.M. 				
Outcomes			Students will be able to solve problems related to				
	CO1		Students will be able to convert units of simple quantities from one set of units to another set of units				
	CO2		Students will be able to calculate quantities and /or compositions, energy usages, etc. in various processes and process equipment such as reactors, filters, dryers, etc.				
Course	1	-	CET4102				
Course title		S	CET4103 Chemical Engineering Thermodynamics -I				
Scheme and Credits	*	20	3L: 1T: 0P 3 credits				
Pre- requisites	8		XIIth Standard Mathematics, Chemistry, Physics, Applied Mathematics – I, Organic Chemistry – I, Applied Physics – I, Analytical Chemistry,				
Objectives of the course	b ₁		Objectives of the course Principles and application of first and second law of thermodynamics, and phase equilibria. Students should be able to apply mass and energy balances to closed and open systems. They should be able to evaluate				

		the properties of nonideal gases and solve				
		problems involving liquefaction,				
		refrigeration and different power cycles.				
		Detailed contents				
	1	Phases, phase transitions, PVT behaviour		2		6
		description of materials: Ideal gas law, var				
		der Waals, virial and cubic equations of				
		state; Reduced conditions & corresponding				
		states theories; correlations in description				
		of material properties and behaviour				
	2	State functions; Equilibrium; Phase Rule		2		6
		Reversible process; Constant P,V,1				
		processes; Energy conservation & first law				
		of thermodynamics; Mass and energy				
		balances for open systems, nozzles				
		diffuser, turbines and pump				
	3	Statements of the second law; Hear		2		6
		engines, Carnot's theorem				
		Thermodynamic Temperature Scales				
		Entropy; Entropy changes of an ideal gas				
		Mathematical statement of the second law				
		Entropy balance for open systems				
		Calculation of ideal work, Lost work				
	4	Thermodynamic property of fluids, Maxwel		2		6
		relations, 2-phase systems, graphs and				
		tables of thermodynamic properties				
	5	Thermodynamic analysis of flow process		2		6
		steam power plants; Rankine cycle				
		Internal combustion engine, Otto engine				
		diesel engine; Jet engine.				
	6	Carnot refrigerator; Vapor-compression		2		6
		cycle; Absorption refrigeration; Heat pump				
		Liquefaction processes.				
		Total	24	12	0	36
Suggested		1. Introduction to Chemical Engineering				
reference		Thermodynamics: Smith, van Ness, Abbott				
books		2. Chemical, Biochemical and Engineering				
		Thermodynamics: S. I. Sandler				
		3. Phase Equilibria in Chemical				
		Engineering: Walas				
		4. Molecular Thermodynamics of Fluid				
		Phase Equilibria: Prausnitz				
Outcomes		Students will be able to solve				
		problems related to				
	CO1	Ferform energy balance calculations in				
		accordance with the first law of				
		thermodynamics				
	CO2	Perform entropy balance calculations ic				
		accordance to the second law of				
		thermodynamics				
	CO3	Perform P, V, T calculations and estimate				
		other thermodynamic properties based on				
		equations of state				
	CO4	Perform analysis of thermodynamic cycles,				
	(estimation of efficiency, etc.				

Course code	0,	BSP4102		
Course title	100	Chemistry Lab-II		
Scheme and	A.	0 L: 0 T: 4 P 2 Credits		
Credits				
Pre-		10+2 level chemistry		
requisites				
Objectives	1	To train the students to identify simple		

of the		1	organic compounds				
course							
	2		To train the students to synthesize				
			synthesis and , purify and analyse organic				
			compounds				
Detailed			1. Identification of organic molecules				
contents			based on physicochemical properties:				
			Organic compounds contain different functional groups which undergo				
			characteristic reactions.				
			1.1. Physical properties such as solubility				
			and chemical reactivity in known reactions				
			will also be used in the identification.				
			1.2. Identification of an organic compounds				
			by physical constants methods (melting				
			point and boiling point).				
			Purification of organic compounds, liquid-liquid, inorganic-organic, solid-liquid				
			mixtures.				
			3. Organic Synthesis:				
			3.1. One-step synthesis of organic				
			compounds				
			3.2. Common synthetic methods using in				
			reactions for the synthesis of				
			pharmaceutical and biological importance molecules and optimization of reaction				
			conditions.				
			3.3. Progress of the reactions monitoring				
			by thin layer chromatography (TLC) and IR				
			analysis.				
			4. Organic Sample characterization IR,				
			Mass Spectrometry, GC-MS, NMR				
			4.1. Spectroscopic techniques like IR and NMR will be utilized to elucidate the				
			structure of organic compounds.				
			5. Size Exclusion Chromatography:				
			determination of molecular weight of				
			macromolecules				
			Total	0	0	48	48
Outcomes			Α'				
	601		Students will be able to				
	CO1		evetomatically				
	CO2		systematically Determine the synthetic route of known				
	202		crganic compound.				
	CO3		Judge the chemical reactions with specific				
			functional groups				
	CO4	7	Purify organic compound based on physical				
		V	properties.				
Course code		V	BSP4103				
Course title		.0	Physics Laboratory				
Scheme and		, O	0 L: 0 T: 4 P 2 Credits				
Credits		7					
Pre-	,C)	10+2 level chemistry				
	(-				
requisites	6.7		Operating basis devises measurment of				
Objectives of	-Q'		Operating basic devices measurment of				
	00,		voltage, current and photocurrent. Exploring				
Objectives of	PS.		voltage, current and photocurrent. Exploring source of monochromatic light and its				
Objectives of the course	P. Q.		voltage, current and photocurrent. Exploring				
Objectives of the course Detailed	P.Q		voltage, current and photocurrent. Exploring source of monochromatic light and its				
Objectives of the course	P.Q.		voltage, current and photocurrent. Exploring source of monochromatic light and its operation and applications.				
Objectives of the course Detailed	1 2		voltage, current and photocurrent. Exploring source of monochromatic light and its				

	3	Photoelectric effect				
	4	Ultrasonic-velocity of sound in liquid				
		measurement				
	5	Thermistor				
	6	Viscosity of liquid-measurement				
	7	Determination of Angle of prism and angle				
		of minimum deviation by using prism				
	8	Determination refractive index of prism				
		using spectrometer				
	9	Dispersion of light and determination of				
		Wavelength by using Prism				
	10	Newton's rings				
	11	Surface tension				
	12	Determination of nanoparticle size through				
		diffraction grating technique				
		Total	0	0	48	48
		.\ '				
Suggested	1	Physics: Vols. I and II D. Halliday and R.				
books		Resnick, Wiley Eastern.				
	2	A Course of Experiments with LASERs- R. S.				
		Sirohi, Wiley Eastern.				
	3	Optoelectronics -J. Wilson and J.F.B. Hawkes,				
		2nd ed, Prentice-Hall India.				
	4	Ultrasonics: Methods and Applications-				
		J.Blitz, Butterworth				
		, U				
Outcomes		Students will be able to				
	CO1	Understand monochromatic light source and				
		its applications				
	CO2	Understand engineering applications of				
		lasers				
	CO3	Measure thermal conductivity, photoelectric				
		current, effect of magnetic field on electric				
		current and its applications				
		Tan and its applications				

Stu	dy 3 (T4	.)								
			Code	Subjects	Credits	Hrs	/wee	ek		
						L	Т	Р	E. S.	Total
18	BS	BST32 01	BST420 1	Chemistry - III	4	3	1	0	30	100
19	BS	BST32 02	BST420 2	Introduction to Biological Sci. & Bioeng.	4	3	1	0	30	100
20	CE	CET32 01	CET42 01	Momentum Transfer	4	3	1	0	30	100
21	CE	CET32 02	CET42 02	Chem Engg Thermodynamics - il	3	2	1	0	15	50
22	ES	EST32 01	EST420 1	Engineering and solid Mechanics	3	2	1	0	15	50
23	ES	EST32 02	EST420 2	Electrical Engineering and Electronics	3	2	1	0	15	50
24	ES	ESP32 01	ESP420 1	Engineering Laboratory	2	0	0	4	25	50
25	ES	ESP32 02	ESP420 2	Engineering Applications of Computers-III	3	1	0	4	25	50
				TOTAL	26	1 6	6	8	18 5	550

Course code			BST4201	L	Т	Р	Tot
Course title			Chemistry III				
Scheme and			3 L: 1 T: 0 P 4 Credits				
Credits							
Pre-			10+2 level chemistry				
requisites			0				
Objectives	1		To train the students about reaction				
of the			kinetics, electrochemistry, interfacial				
course			chemistry and catalysis, beyond +2 level				
Course title			Detailed contents				
	1		Kinetics	8	2		10
		1.1	Review of rate of reaction, rate constant,				
			effects of the following on rate of reaction:				
			concentration, temperature.				
		1.2	Derivation of rate expression for Second				
			order reactions, Complex reactions:				
			parallel, consecutive, reversible, chain,				
			steady state reactions.				
		1.3	Kinetics and reaction mechanism				
		1.4	Theories of reaction rate				
	2		Electrochemistry	8	2		10
		2.1	Conductance and transport number				
			Electromotive force				
		2.3	Electrochemical methods of analysis:				
		1	Controlled current and controlled potential				
		.0	principles, amplifiers, potentiostat,				
		.0)	galvanostat, cyclic voltammetry,				
		7.	chronoamperometry, chronopotentiometry.				
	- (2.4	Fuels cells, batteries, corrosion		_		
	3/	1 2 1	Surface and Interfacial chemistry	10	4		14
	V,	3.1	Surfaces and interfaces:				
	~~		Surface/interfacial energy and surface/				
	2		interfacial tension. Measurement of				
	Δ,	2.2	surface tension				
	*	3.2	Thermodynamics of surfaces: Gibbs				
			adsorption equation and isotherms.				
			Curved surfaces: Young, Laplace, Kelvin				
		3.3	and Thompson equation.				
		ַ ט.ט	S-L interface: Contact angle, its				

	1					
			measurement and wetting phenomena,			
		2.4	adhesion, and cohesion. L-L interface: Surface active agents: Types			
		3.4				
			and applications. Surfactant aggregates. Emulsions, gels, foams, and			
			microemulsions: preparation, stability and			
			applications			
	4	-		10	4	14
	4	4.1	Catalysis	10	4	14
		4.1	Heterogeneous catalysis			
		4.2	Preparation of catalysts, characterization			
		4.2	of catalysts, catalyst deactivation.			
		4.3	Kinetics of reactions on solid surfaces			
		4.4	Enzyme and photo- catalysis Total	36	12	48
Commented		-		36	12	46
Suggested			1. Organic chemistry – T. W. G Solomons,			
books			C. B. Fryhle, John Wiley and Sons			
			2. Organic chemistry, Clayden, Greeves,			
			Warren, Oxford publication			
			3. Organic Chemistry, Paula \ Bruce, Pearson Education			
Suggested		 	1. Physical Chemistry, P.W. Atkins and J. D.			
books			Paula, 8th Edition, Oxford University Press.			
מאטעט			2. Physical Chemistry, K.J. Laidler and J.M.			
			Meiser, 2nd Edition, CBS Publishers			
			3. Physical Chemistry: A Molecular			
			Approach, D.A. Mcquarrie and J.D. Simon			
Suggested			1. Chemical Kinetics and Catalysis, R.J.			
reference			Masel, John Wiley and Sons1			
books			2. Chemical Kinetics and Reaction			
			dynamics, Paul H. Houston, McGraw Hill			
			3. Catalytic Chemistry, Bruce C Gates,			
			John Wiley and Sons			
			4. Principles of Heterogeneous Catalysis,			
			J.M. Thomas and W.J. Thomas, John Wiley			
			and Sons.			
Outcomes			Students will be able to			
	CO		1. understand kinetics, write rate			
	1		expressions and predict mechanism of			
			simple reactions based on kinetics.			
	CO		2. understand electrochemical phenomena			
	2		and application of analytical methods			
			based on them.			
	СО		3. understand surface and interfacial			
	3		phenomena and use them.			
	СО		4. learn the principles, design, and			
	4		applications of catalysis.			
			γ			
Course code		-	BST4202			
Course title		5	Introduction of Biological Sciences and			
		V	Bioengineering			
Scheme and		0	3 L: 1 T: 0 P 4 Credits			
Credits	L	0,				
Pre-		10	Xth Standard Biology course, Physical			
requisites	ŕ	7"	Chemistry			
Objectives of	1.0	/	To understand basic principles of			
the course	7		biochemistry, genetics, molecular biology,			
	~		and cell biology.			
	·Q'		Biological function at the molecular level is			
	600		particularly emphasized and covers the			
ĺ	Λ.		- - - - - - - - -			
ļ	A.		structure and regulation of genes as well			
	Å.		structure and regulation of genes, as well as, the structure and synthesis of proteins.			
	Y.		as, the structure and synthesis of proteins,			
	Ą.					

			into multicellular systems and organisms.			
			The course also offers important			
			contribution to understand chemical			
			reactions present in living organisms.			
			A cell is the smallest self-preserving and			
			self-reproducing unit.			
			Many complex chemical reactions and			
			complex transport processes occur. A cell			
			looks like a chemical plant.			
Course title			Detailed contents			
	1		Introduction to cells, Eukaryotes and	3	1	4
			prokaryotes, Microscopy and cell			
			architecture			
	2		Chemical Components of the cell, Chemical	3	1	4
			bonds and groups, The chemical properties			
			of water, An outline of some of the types of			
			sugar, Fatty acids and other lipids, The 20			
			amino acids found in proteins, A survey of			
			the nucleotides, The principal types of weak			
			noncovalent bonds			
	3		Energy, Catalysis, and Biosynthesis, Free	3	1	4
			energy and biological reactions			
	4		Protein Structure and Function, A few	3	1	4
			examples of some general proteins, Four			
			different ways of depicting a small protein,			
			Making and using antibodies, Cell breakage			
			and initial fractionation of cell extracts,			
			Protein separation by chromatography,			
			Protein separation by electrophoresis			
	5		DNA and Charomosomes, DNA replication,	3	1	4
			repair and recombinations, From DNA to			
			Protein: How Cells Read the Genome,			
			Control of Gene Expression			
	6		How Genes and genome evolve, analyzing	3	1	4
			genes and genomes			
	7		Membrane Structure, Membrane Transport	3	1	4
	8		How Cell Obtain energy from food,	6	2	8
			Glycolysis, the complete citric acid cycle,			
			Energy Generation in Mitochondria and			
			Chloroplasts, Redox potentials			
	9		Intracellular compartment and transport,	3	1	4
			cell communication, cytoskeleton, cell			
			d vision			
	10		Sex and Genetics	3	1	4
	11	6	Bioengineering, tissues, stem cells and	3	1	4
		-	cancer			
		V	Total	36	12	48
Suggested		7	1) Essential cell biology, Bruce Alberts et al,			
books		-0	3rd Edition, ISBN 978-0-8153-4129-1			
/reference		O.	Garland Science, Taylor & Francis Group			
books	4	7	2) Lehninger Principles of Biochemistry,			
	.0)	3) David L. Nelson, Albert L. Lehninger,			
		Ī	Michael M. Cox			
	٥,		ISBN 071677108X, 9780716771081			
Outcomes	2		Students will be able to			
	C01		Identify the general structure and function			
	A.		of carbohydrates, phospholipds, proteins,			
			enzymes and nucleic acids.			
	CO2		Outline the general processes used by the			
			cell to generate cellular energy from sugar			
			and to generate the energy and reducing			

			1			
		agent needed for the citric acid cycle.				
	CO3	Describe how DNA was shown to be the				
		genetic material and how DNA is copied.				
	CO4	Describe the structure and regulation of				
		genes, and the structure and synthesis of				
		proteins.				
	CO5	Predict the results of genetic crosses				
		involving two or more traits when the genes				
		involved are linked or unlinked.				
	CO6	Describe how cell divides and mutation				
		takes place.				
	CO7	Describe different microorganism and their				
		reproduction cycles				
		^				
		Δ.				
Course code		CET4201	L	Т	Р	Tot
Course title		Momentum Transfer		•	F	101
Scheme and		3 L: 1 T: 0 P 4 Credits				
Credits		3 L. I I. U F 4 Cleuits				
Pre-		XIIth Standard Physics and Mathematics,				
requisites		Applied Physics – I and II. Applied				
requisites		Mathematics – I and II				
Objectives	1	This basic course introduces concepts of				
of the	_	momentum transfer to students. Various				
course		concepts such as pressure, momentum,				
Course		energy are introduced. Laws related to				
		conservation of momentum, energy are				
		taught. Applications of these laws to				
		various engineering situations and process				
		equipment is explained with the help of				
		several problems				
Course title		Detailed contents				
	1	Fluid Statics and applications to	3	1		4
		engineering importance.		_		_
	2	engineering mportance. Equations of Continuity and Motion	8	3		11
	2			_		-
	2	Equations of Continuity and Motion		_		-
	2	Equations of Continuity and Motion (Cartesian, cylindrical, and spherical		_		-
	2	Equations of Continuity and Motion (Cartesian, cylindrical, and spherical coordinates) in laminar flows and its		_		-
	2	Equations of Continuity and Motion (Cartesian, cylindrical, and spherical coordinates) in laminar flows and its applications for the calculation of velocity		_		-
	3	Equations of Continuity and Motion (Cartesian, cylindrical, and spherical coordinates) in laminar flows and its applications for the calculation of velocity profiles, shear stresses, power, etc. in various engineering applications. Basics of Turbulent flows	8	3		11
		Equations of Continuity and Motion (Cartesian, cylindrical, and spherical coordinates) in laminar flows and its applications for the calculation of velocity profiles, shear stresses, power, etc. in various engineering applications. Basics of Turbulent flows Bernoulli's Equation and engineering	8	3		11
	3	Equations of Continuity and Motion (Cartesian, cylindrical, and spherical coordinates) in laminar flows and its applications for the calculation of velocity profiles, shear stresses, power, etc. in various engineering applications. Basics of Turbulent flows Bernoulli's Equation and engineering applications, Pressure drop in pipes and	8	3		11
	3 4	Equations of Continuity and Motion (Cartesian, cylindrical, and spherical coordinates) in laminar flows and its applications for the calculation of velocity profiles, shear stresses, power, etc. in various engineering applications. Basics of Turbulent flows Bernoulli's Equation and engineering applications, Pressure drop in pipes and Fittings, Piping systems	2 6	0 2		11
	3	Equations of Continuity and Motion (Cartesian, cylindrical, and spherical coordinates) in laminar flows and its applications for the calculation of velocity profiles, shear stresses, power, etc. in various engineering applications. Basics of Turbulent flows Bernoulli's Equation and engineering applications, Pressure drop in pipes and Fitzings, Piping systems Fluid moving machinery such as pumps,	8	3		11
	3 4	Equations of Continuity and Motion (Cartesian, cylindrical, and spherical coordinates) in laminar flows and its applications for the calculation of velocity profiles, shear stresses, power, etc. in various engineering applications. Basics of Turbulent flows Bernoulli's Equation and engineering applications, Pressure drop in pipes and Fittings, Piping systems Fluid moving machinery such as pumps, blowers, compressors, vacuum systems,	2 6	0 2		11 2 8
	3 4	Equations of Continuity and Motion (Cartesian, cylindrical, and spherical coordinates) in laminar flows and its applications for the calculation of velocity profiles, shear stresses, power, etc. in various engineering applications. Basics of Turbulent flows Bernoulli's Equation and engineering applications, Pressure drop in pipes and Fittings, Piping systems Fluid moving machinery such as pumps, blowers, compressors, vacuum systems, etc.	2 6	0 2		2 8
	3 4	Equations of Continuity and Motion (Cartesian, cylindrical, and spherical coordinates) in laminar flows and its applications for the calculation of velocity profiles, shear stresses, power, etc. in various engineering applications. Basics of Turbulent flows Bernoulli's Equation and engineering applications, Pressure drop in pipes and Fittings, Piping systems Fluid moving machinery such as pumps, blowers, compressors, vacuum systems, etc. Boundary Layer Flows: Blasius equations	2 6	0 2		11 2 8
	3 4	Equations of Continuity and Motion (Cartesian, cylindrical, and spherical coordinates) in laminar flows and its applications for the calculation of velocity profiles, shear stresses, power, etc. in various engineering applications. Basics of Turbulent flows Bernoulli's Equation and engineering applications, Pressure drop in pipes and Fittings, Piping systems Fluid moving machinery such as pumps, blowers, compressors, vacuum systems, etc. Boundary Layer Flows: Blasius equations and solution, Von-Karman integral	2 6	0 2		2 8
	3 4	Equations of Continuity and Motion (Cartesian, cylindrical, and spherical coordinates) in laminar flows and its applications for the calculation of velocity profiles, shear stresses, power, etc. in various engineering applications. Basics of Turbulent flows Bernoulli's Equation and engineering applications, Pressure drop in pipes and Fittings, Piping systems Fluid moving machinery such as pumps, blowers, compressors, vacuum systems, etc. Boundary Layer Flows: Blasius equations and solution, Von-Karman integral equations and solutions, Boundary layer	2 6	0 2		2 8
	5	Equations of Continuity and Motion (Cartesian, cylindrical, and spherical coordinates) in laminar flows and its applications for the calculation of velocity profiles, shear stresses, power, etc. in various engineering applications. Basics of Turbulent flows Bernoulli's Equation and engineering applications, Pressure drop in pipes and Fittings, Piping systems Fluid moving machinery such as pumps, blowers, compressors, vacuum systems, etc. Boundary Layer Flows: Blasius equations and solution, Von-Karman integral equations and solutions, Boundary layer separation: skin and form drag.	8 2 6 7	3 0 2 2		11 2 8 9
	3 4	Equations of Continuity and Motion (Cartesian, cylindrical, and spherical coordinates) in laminar flows and its applications for the calculation of velocity profiles, shear stresses, power, etc. in various engineering applications. Basics of Turbulent flows Bernoulli's Equation and engineering applications, Pressure drop in pipes and Fittings, Piping systems Fluid moving machinery such as pumps, blowers, compressors, vacuum systems, etc. Boundary Layer Flows: Blasius equations and solution, Von-Karman integral equations and solutions, Boundary layer separation: skin and form drag. Particle Dynamics, Flow through Fixed and	2 6	0 2		2 8
	3 4 5 6	Equations of Continuity and Motion (Cartesian, cylindrical, and spherical coordinates) in laminar flows and its applications for the calculation of velocity profiles, shear stresses, power, etc. in various engineering applications. Basics of Turbulent flows Bernoulli's Equation and engineering applications, Pressure drop in pipes and Fittings, Piping systems Fluid moving machinery such as pumps, blowers, compressors, vacuum systems, etc. Boundary Layer Flows: Blasius equations and solution, Von-Karman integral equations and solutions, Boundary layer separation: skin and form drag. Particle Dynamics, Flow through Fixed and Fluidised Beds,	8 2 6 7	2		11 2 8 9
	5	Equations of Continuity and Motion (Cartesian, cylindrical, and spherical coordinates) in laminar flows and its applications for the calculation of velocity profiles, shear stresses, power, etc. in various engineering applications. Basics of Turbulent flows Bernoulli's Equation and engineering applications, Pressure drop in pipes and Fittings, Piping systems Fluid moving machinery such as pumps, blowers, compressors, vacuum systems, etc. Boundary Layer Flows: Blasius equations and solution, Von-Karman integral equations and solutions, Boundary layer separation: skin and form drag. Particle Dynamics, Flow through Fixed and Fluidised Beds, Gas – liquid Two phase flow: types of flow	8 2 6 7	3 0 2 2		11 2 8 9
	3 4 5 6	Equations of Continuity and Motion (Cartesian, cylindrical, and spherical coordinates) in laminar flows and its applications for the calculation of velocity profiles, shear stresses, power, etc. in various engineering applications. Basics of Turbulent flows Bernoulli's Equation and engineering applications, Pressure drop in pipes and Fittings, Piping systems Fluid moving machinery such as pumps, blowers, compressors, vacuum systems, etc. Boundary Layer Flows: Blasius equations and solution, Von-Karman integral equations and solutions, Boundary layer separation: skin and form drag. Particle Dynamics, Flow through Fixed and Fluidised Beds, Gas - liquid Two phase flow: types of flow regimes, Regime maps, estimation of	8 2 6 7	2		11 2 8 9
	3 4 5 6	Equations of Continuity and Motion (Cartesian, cylindrical, and spherical coordinates) in laminar flows and its applications for the calculation of velocity profiles, shear stresses, power, etc. in various engineering applications. Basics of Turbulent flows Bernoulli's Equation and engineering applications, Pressure drop in pipes and Fitzings, Piping systems Fluid moving machinery such as pumps, blowers, compressors, vacuum systems, etc. Boundary Layer Flows: Blasius equations and solution, Von-Karman integral equations and solutions, Boundary layer separation: skin and form drag. Particle Dynamics, Flow through Fixed and Fluidised Beds, Gas - liquid Two phase flow: types of flow regimes, Regime maps, estimation of pressure drop and hold-up	8 2 6 7 3	3 0 2 2		11 2 8 9 4
	3 4 5 6	Equations of Continuity and Motion (Cartesian, cylindrical, and spherical coordinates) in laminar flows and its applications for the calculation of velocity profiles, shear stresses, power, etc. in various engineering applications. Basics of Turbulent flows Bernoulli's Equation and engineering applications, Pressure drop in pipes and Fitzings, Piping systems Fluid moving machinery such as pumps, blowers, compressors, vacuum systems, etc. Boundary Layer Flows: Blasius equations and solution, Von-Karman integral equations and solutions, Boundary layer separation: skin and form drag. Particle Dynamics, Flow through Fixed and Fluidised Beds, Gas - liquid Two phase flow: types of flow regimes, Regime maps, estimation of pressure drop and hold-up	8 2 6 7	2		11 2 8 9
Suggested	3 4 5 6	Equations of Continuity and Motion (Cartesian, cylindrical, and spherical coordinates) in laminar flows and its applications for the calculation of velocity profiles, shear stresses, power, etc. in various engineering applications. Basics of Turbulent flows Bernoulli's Equation and engineering applications, Pressure drop in pipes and Fitzings, Piping systems Fluid moving machinery such as pumps, blowers, compressors, vacuum systems, etc. Boundary Layer Flows: Blasius equations and solution, Von-Karman integral equations and solutions, Boundary layer separation: skin and form drag. Particle Dynamics, Flow through Fixed and Fluidised Beds, Gas - liquid Two phase flow: types of flow regimes, Regime maps, estimation of pressure drop and hold-up Total 1) Transport Phenomena, Bird R.B.,	8 2 6 7 3	3 0 2 2		11 2 8 9 4
reference	3 4 5 6	Equations of Continuity and Motion (Cartesian, cylindrical, and spherical coordinates) in laminar flows and its applications for the calculation of velocity profiles, shear stresses, power, etc. in various engineering applications. Basics of Turbulent flows Bernoulli's Equation and engineering applications, Pressure drop in pipes and Fitzings, Piping systems Fluid moving machinery such as pumps, blowers, compressors, vacuum systems, etc. Boundary Layer Flows: Blasius equations and solution, Von-Karman integral equations and solutions, Boundary layer separation: skin and form drag. Particle Dynamics, Flow through Fixed and Fluidised Beds, Gas - liquid Two phase flow: types of flow regimes, Regime maps, estimation of pressure drop and hold-up Total 1) Transport Phenomena, Bird R.B., Stewart W.E., Lightfoot E.N.	8 2 6 7 3	3 0 2 2		11 2 8 9 4
	3 4 5 6	Equations of Continuity and Motion (Cartesian, cylindrical, and spherical coordinates) in laminar flows and its applications for the calculation of velocity profiles, shear stresses, power, etc. in various engineering applications. Basics of Turbulent flows Bernoulli's Equation and engineering applications, Pressure drop in pipes and Fitzings, Piping systems Fluid moving machinery such as pumps, blowers, compressors, vacuum systems, etc. Boundary Layer Flows: Blasius equations and solution, Von-Karman integral equations and solutions, Boundary layer separation: skin and form drag. Particle Dynamics, Flow through Fixed and Fluidised Beds, Gas - liquid Two phase flow: types of flow regimes, Regime maps, estimation of pressure drop and hold-up Total 1) Transport Phenomena, Bird R.B., Stewart W.E., Lightfoot E.N. 2) Fluid Mechanics, Kundu Pijush K.	8 2 6 7 3	3 0 2 2		11 2 8 9 4
reference	3 4 5 6	Equations of Continuity and Motion (Cartesian, cylindrical, and spherical coordinates) in laminar flows and its applications for the calculation of velocity profiles, shear stresses, power, etc. in various engineering applications. Basics of Turbulent flows Bernoulli's Equation and engineering applications, Pressure drop in pipes and Fittings, Piping systems Fuid moving machinery such as pumps, blowers, compressors, vacuum systems, etc. Boundary Layer Flows: Blasius equations and solution, Von-Karman integral equations and solutions, Boundary layer separation: skin and form drag. Particle Dynamics, Flow through Fixed and Fluidised Beds, Gas – liquid Two phase flow: types of flow regimes, Regime maps, estimation of pressure drop and hold-up Total 1) Transport Phenomena, Bird R.B., Stewart W.E., Lightfoot E.N. 2) Fluid Mechanics, Kundu Pijush K. 3) Fluid Mechanics, F. W. White	8 2 6 7 3	3 0 2 2		11 2 8 9 4
reference	3 4 5 6	Equations of Continuity and Motion (Cartesian, cylindrical, and spherical coordinates) in laminar flows and its applications for the calculation of velocity profiles, shear stresses, power, etc. in various engineering applications. Basics of Turbulent flows Bernoulli's Equation and engineering applications, Pressure drop in pipes and Fitzings, Piping systems Fluid moving machinery such as pumps, blowers, compressors, vacuum systems, etc. Boundary Layer Flows: Blasius equations and solution, Von-Karman integral equations and solutions, Boundary layer separation: skin and form drag. Particle Dynamics, Flow through Fixed and Fluidised Beds, Gas - liquid Two phase flow: types of flow regimes, Regime maps, estimation of pressure drop and hold-up Total 1) Transport Phenomena, Bird R.B., Stewart W.E., Lightfoot E.N. 2) Fluid Mechanics, Kundu Pijush K.	8 2 6 7 3	3 0 2 2		11 2 8 9 4

Outcomes	1	Students will be able to				
Outcomes	СО	Students will be able to calculate				
	1	velocity profiles by simplification of				
		equations of motion in simple 1-D flows				
	СО	Students should be able to calculate				
	2	boundary layer thicknesses, friction factor				
	СО	Students will be able to calculate pressure				
	3	drop, power requirements for single phase				
		flow in pipes.				
	СО	Students should be able to calculate two				
	4	phase gas/liquid pressure drop.				
	CO	Students should be able to calculate				
	5	power requirements, NPSH requirements				
		of pumps.				
	СО	Students should be able to calculate drag				
	6	force and terminal settling velocity for				
		single particles				
	co	Students will be able to calculate pressure				
	7	drop in fixed and fluidized beds.				
Course code	1	CET4202				
Course title	1	Chem Engg Thermodynamics - II				
Scheme and		3 L: 1 T: 0 P 4 Credits				
Credits	1	0		_	_	_
Pre-		Applied Mathematics- I and II, Physical	L	Т	P	Tot
requisites		Chemistry, Chemical Engineering				
61.1.11	_	Thermodynamics-l				
Objectives	1	This course builds on the preceding course				
of the		by developing the concept of non-ideal				
course		mixing and provides students with the				
		formalism and insights necessary to tackle real industrial problems like liquid-liquid				
		phase splitting, azeotropy, non-zero heats				
		of mixing, sparingly soluble gases and				
		solids, electrolytes etc. Student who have				
		taken this course may be expected to				
		intelligently analyze practically the full				
		spectrum of industrial chemical processes.				
Course title		Detailed contents				
	1	Review of first and second law of	2			2
	1 -	thermodynamics				
	2	Vapor-liquid equilibrium: phase rule,simple	3	1		4
	_	models for VLE;VLE by modified Raoult's				
		law; VLE from K-value correlations; Flash				
		calculations.				
	3	Solution Thermodynamics: fundamental	6	2		8
		property relationships, free energy and				
		chemical potential, partial properties,				
		$\downarrow\downarrow$ definition of fugacity and fugacity				
		coefficient of pure species and species in				
		solution, the ideal solution and excess				
		properties.				
	4	Liquid phase properties from VLE, Models	6	2		8
		for excess Gibbs energy, heat effects and				
	_ <i>i</i>	property change on mixing.				
	5,0	UNIFAC and UNIQUAC models	2	1		3
	6	Liquid-Liquid Equilibria; Vapor-Liquid-Liquid	6	3		9
	N	Equilibria; Solid-Liquid Equilibria; Solid-Gas				
	O,	Equilibria.				_
	Dex	Chemical reaction equilibria: equilibrium	4	2		6
	1	criterion, equilibrium constant, evaluation				
		of equilibrium constant at different				
		temperatures, equilibrium conversion of				
	1	single reactions, multireaction equilibria.	20	11		40
		Total	29	11		40

	ı			1	1		
Suggested			1. Introduction to Chemical Engineering				
reference			Thermodynamics: Smith, van Ness, Abbott				
books			2. Chemical, Biochemical and Engineering				
			Thermodynamics: S. I. Sandler				
			3. Phase Equilibria in Chemical				
			Engineering: Walas				
			4. Molecular Thermodynamics of Fluid				
			Phase Equilibria: Prausnitz				
Outcomes			Students will be able to				
	CO		Use activity coefficient models to calculate				
	1		excess properties of liquids				
	CO		Use modified Raoult's law to calculate VLE				
	2		of non-ideal mixtures				
	CO		Calculate chemical equilibrium in non-ideal				
	3		mixtures				
	СО		Calcuate solubility of gases in liquids				
	4		including aqueous solutions with				
			electrolyes				
	СО		Quantitatively describe salting out effect				
	5		quantituit e., ueseines suit, ig cut en eet				
	co		Estimate mixture properties from group				
	6		contribution methods				
Carrea and					ļ		
Course code			EST4201				
Course title			Engineering and Solid Mechanics				
Scheme and			3 L: 1 T: 0 P 3				
Credits			Credits				
Pre-			/0				
requisites							
Objectives			This subject will help students to				
of the			understand use of basics of Applied				
course			Mechanics and Strength of Materials.				
			This is the foundation course for a good				
			Design Engineer.				
			In engineering equipments and structures,				
			which different types of forces are to be				
			considered and how to quantify them?				
			What are different conditions of				
			equilibrium? How to apply equilibrium				
			condition to analyse the problems ?				
			Importance of centre of gravity and				
			moment of Inertia in Engineering Design.				
			Advantages and disadvantages of various				
			geometric sections available for				
			engineering design.				
			Study of different types of stresses and				
			strains occurring in various components of				
		4	the structure. Understanding and				
		-	calculating Shear force and Bending				
		1	moment in the beams with simple and				
		1	complex loading. Determination of				
		0	Bending stresses and shear stresses in the				
		0,	beams. Evaluation of slopes and				
		0	deflections in the beams with simple and				
	á	-3	complex loading.				
Course title),	1	Detailed contents	L	Т	Р	Tot
	~		Concepts of forces, their types,	3	1		4
			Resolution of forces, Composition of				
	-0						
	8		forces, Steps in Engineering Design,				
	2		forces, Steps in Engineering Design, Different types supports and free body				
	PON						
	P.P.		Different types supports and free body	4	2		6
	PR 2		Different types supports and free body diagram.	4	2		6
	2		Different types supports and free body diagram. Equilibrium of rigid bodies - Conditions of	4	2		6

	T		analysis of beams and truss. (Both			
			Analytical & Graphical Method)			
	3		Concept of moment of Inertia (Second	3	1	4
			moment of area) its use. Parallel axis			
			theorem. Problems of finding centroid and			
			moment of Inertia of single figures,			
			composite figures. Perpendicular axis			
	4		theorem, Polar M.I., Radius of gyration. Stresses and Strains - Tensile and	3	1	4
	4		compressive stresses, strains, modulus of	3	_	-
			elasticity, modulus of rigidity bulk			
			modulus. Relation between elastic			
			constants. Lateral strain, Poisson's ratio,			
			volumetric strain. Thermal stresses and			
			strains. Problems based on stresses and			
			strains. Stresses and Strains Relationship			
	-		and Strain Deformation relationship.	3	2	_
	5		Shear Force and Bending Moment - Basic concept, S.F. and B.M. diagram for	3	2	5
			cantilever, simply supported beams (with			
			or without overhang) under various			
			loading. Problems with concentrated and			
			U.D. loads.			
	6		Bending stress & shear Stress: Derivation	5	3	8
			of basic formula for Bending, Shear stress,			
			Bending stress Distribution and Shear			
			stress distribution for various loading and geometric sections. Problems of			
			geometric sections. Problems of Cantilever, simply supported and Beams			
			with overhang.			
	7		Slope and Deflection of beams - Basic	3	2	5
			concept, Slope and Deflection of cantilever			
			and simply supported beams under			
			standard loading. Macaulay's method.			
			Simple problems of finding slopes and			
	8		deflections.	5	2	7
	0		Thick and Thin cylinders - concept of radial, longitudinal stresses, behaviour of	Э	2	'
			thin cylinders. Problems on thin			
			cylindrical.			
			Total	24	12	36
Suggested			V V			
reference			0			
books		1	Engine aging Machaging Val I. Chabing hu D			
		1	Engineering Mechanics Vol I Statics by B. N. Thadani, Publisher Wenall Book			
			Corporation			
		2 1	Introduction to Mechanics of Solids by			
		. ~	Egor Popov, Prentice Hall of India Pvt. Ltd			
		30	Mechanics of Materials by Ferdinand Beer			
		λ	and E. Russel Johnston, Tata McGraw Hill			
		0.0	Publishing Co. Ltd.			
		VO4	Fundamentals of applied Mechanics by			
	, A	2	Dadhe, Jamdar and Walavalkar, Sarita Prakashan Pune			
	16	5	Engineering Mechanics by S. Timoshenko			
	7		and D. H. Young, McGraw Hill Publications			
	~~	6	Strength of Materials by Ferdinand Singer			
	2		and Andrew Pytel, Harper Colins Publishers			
	Å.,		Ltd			
	,	7	Concrete Technology by A. M. Neville,			
			Pearson Education			
		8	Fundamental of Fibre reinforced composite			
			materials by A. R. Busell and J. Renard, Taylor & Francis			
	1		layior & Francis			

Outcomes			Students will be able to				
	СО		Understand conditions of equilibrium and				
	1		how to apply conditions of equilibrium for				
			engineering applications.				
	CO		Understand use of centroid and moment of				
	2		inertia for design problems.				
	CO		Understand different stresses induced				
	3		when structures subjected to various				
			loadings.				
	СО		Understand the concepts of shear force,				
	4		bending moment and deflections in beams.				
	СО		Understand design procedure for thin and				
	5		thick cylinders.				
	co		Understand various materials used for				
	6		structures and their properties				
Course code	 		EST4202				
Course title		-	Electrical Engineering and Electronics				
Scheme and	-	-	3 L: 1 T: 0 P 3 Credits				
Credits			JEL I I OF J CITALIS				
Pre-			XIIth Standard Physics and Mathematics				
requisites			courses, Applied Physics - II				
Objectives			Students will get an insight to the				
of the			importance of Electrical Energy in				
course			Chemical Plants . The students will				
			understand the basics of electricity,				
			selection of different types of drives for a				
			given application process. They will get				
			basic knowledge as regards to Power				
			factor improvement and thyristor				
			application in industries.				
Course title			Detailed contents	L	Т	Р	Tot
	1		Basic Laws: Ohm's law, Kirchhoff's circuit	7	2		9
			laws, Voltage divider rule and Current				
			divider rule; Network theorems: Mesh				
			Analysis, Nodal Analysis, Superposition, Thevenin's theorems.				
	2		A.C. Fundamentals: Generation of	7	2		9
	_		sinusoidal voltage, frequency of generated	_ ′	_		,
			voltage, definition and numerical values of				
			average value, root mean square value,				
	1		average value, root incan square value.				
			form factor and peak factor of sinusoidally				
			form factor and peak factor of sinusoidally varying voltage and current, phasor				
			form factor and peak factor of sinusoidally varying voltage and current, phasor representation of alternating quantities,				
			form factor and peak factor of sinusoidally varying voltage and current, phasor representation of alternating quantities, A.C. through resistance, inductance and				
			form factor and peak factor of sinusoidally varying voltage and current, phasor representation of alternating quantities, A.C. through resistance, inductance and capacitance, simple RL, RC and RLC				
			form factor and peak factor of sinusoidally varying voltage and current, phasor representation of alternating quantities, A.C. through resistance, inductance and capacitance, simple RL, RC and RLC circuits. Power, power factor, Phasor				
		7,	form factor and peak factor of sinusoidally varying voltage and current, phasor representation of alternating quantities, A.C. through resistance, inductance and capacitance, simple RL, RC and RLC circuits. Power, power factor, Phasor diagram solution of AC circuits. Series and				
	2	79	form factor and peak factor of sinusoidally varying voltage and current, phasor representation of alternating quantities, A.C. through resistance, inductance and capacitance, simple RL, RC and RLC circuits. Power, power factor, Phasor diagram solution of AC circuits. Series and parallel circuits	2	2		
	3	762	form factor and peak factor of sinusoidally varying voltage and current, phasor representation of alternating quantities, A.C. through resistance, inductance and capacitance, simple RL, RC and RLC circuits. Power, power factor, Phasor diagram solution of AC circuits. Series and parallel circuits 3-phase Power: Advantages of 3-phase	2	2		4
	3	20,00	form factor and peak factor of sinusoidally varying voltage and current, phasor representation of alternating quantities, A.C. through resistance, inductance and capacitance, simple RL, RC and RLC circuits. Power, power factor, Phasor diagram solution of AC circuits. Series and parallel circuits 3-phase Power: Advantages of 3-phase power, Generation of 3-phase power,	2	2		4
	3	7900	form factor and peak factor of sinusoidally varying voltage and current, phasor representation of alternating quantities, A.C. through resistance, inductance and capacitance, simple RL, RC and RLC circuits. Power, power factor, Phasor diagram solution of AC circuits. Series and parallel circuits 3-phase Power: Advantages of 3-phase power, Generation of 3-phase power, Three-phase balanced circuits, voltage and	2	2		4
	3	1000 po	form factor and peak factor of sinusoidally varying voltage and current, phasor representation of alternating quantities, A.C. through resistance, inductance and capacitance, simple RL, RC and RLC circuits. Power, power factor, Phasor diagram solution of AC circuits. Series and parallel circuits 3-phase Power: Advantages of 3-phase power, Generation of 3-phase power, Three-phase balanced circuits, voltage and current relations in star and delta	2	2		4
	3	600	form factor and peak factor of sinusoidally varying voltage and current, phasor representation of alternating quantities, A.C. through resistance, inductance and capacitance, simple RL, RC and RLC circuits. Power, power factor, Phasor diagram solution of AC circuits. Series and parallel circuits 3-phase Power: Advantages of 3-phase power, Generation of 3-phase power, Three-phase balanced circuits, voltage and current relations in star and delta connections. Measurement of three phase	2	2		4
	3	1000 Page	form factor and peak factor of sinusoidally varying voltage and current, phasor representation of alternating quantities, A.C. through resistance, inductance and capacitance, simple RL, RC and RLC circuits. Power, power factor, Phasor diagram solution of AC circuits. Series and parallel circuits 3-phase Power: Advantages of 3-phase power, Generation of 3-phase power, Three-phase balanced circuits, voltage and current relations in star and delta connections. Measurement of three phase power using two wattmeter method	2	2		4
	3	1000	form factor and peak factor of sinusoidally varying voltage and current, phasor representation of alternating quantities, A.C. through resistance, inductance and capacitance, simple RL, RC and RLC circuits. Power, power factor, Phasor diagram solution of AC circuits. Series and parallel circuits 3-phase Power: Advantages of 3-phase power, Generation of 3-phase power, Three-phase balanced circuits, voltage and current relations in star and delta connections. Measurement of three phase		_		
	3	1000	form factor and peak factor of sinusoidally varying voltage and current, phasor representation of alternating quantities, A.C. through resistance, inductance and capacitance, simple RL, RC and RLC circuits. Power, power factor, Phasor diagram solution of AC circuits. Series and parallel circuits 3-phase Power: Advantages of 3-phase power, Generation of 3-phase power, Three-phase balanced circuits, voltage and current relations in star and delta connections. Measurement of three phase power using two wattmeter method Single Phase Transformers: Necessity		_		-
	3	1000 por	form factor and peak factor of sinusoidally varying voltage and current, phasor representation of alternating quantities, A.C. through resistance, inductance and capacitance, simple RL, RC and RLC circuits. Power, power factor, Phasor diagram solution of AC circuits. Series and parallel circuits 3-phase Power: Advantages of 3-phase power, Generation of 3-phase power, Three-phase balanced circuits, voltage and current relations in star and delta connections. Measurement of three phase power using two wattmeter method Single Phase Transformers: Necessity of transformer, Principle of operation,		_		-
	3	7000	form factor and peak factor of sinusoidally varying voltage and current, phasor representation of alternating quantities, A.C. through resistance, inductance and capacitance, simple RL, RC and RLC circuits. Power, power factor, Phasor diagram solution of AC circuits. Series and parallel circuits 3-phase Power: Advantages of 3-phase power, Generation of 3-phase power, Three-phase balanced circuits, voltage and current relations in star and delta connections. Measurement of three phase power using two wattmeter method Single Phase Transformers: Necessity of transformer, Principle of operation, Types and construction of transformers, EMF equation, Types of Losses. Power factor improvement methods,		_		-
	40	79000	form factor and peak factor of sinusoidally varying voltage and current, phasor representation of alternating quantities, A.C. through resistance, inductance and capacitance, simple RL, RC and RLC circuits. Power, power factor, Phasor diagram solution of AC circuits. Series and parallel circuits 3-phase Power: Advantages of 3-phase power, Generation of 3-phase power, Three-phase balanced circuits, voltage and current relations in star and delta connections. Measurement of three phase power using two wattmeter method Single Phase Transformers: Necessity of transformer, Principle of operation, Types and construction of transformers, EMF equation, Types of Losses. Power factor improvement methods, concept of most economical power factor.	3	1		4
	40	7000	form factor and peak factor of sinusoidally varying voltage and current, phasor representation of alternating quantities, A.C. through resistance, inductance and capacitance, simple RL, RC and RLC circuits. Power, power factor, Phasor diagram solution of AC circuits. Series and parallel circuits 3-phase Power: Advantages of 3-phase power, Generation of 3-phase power, Three-phase balanced circuits, voltage and current relations in star and delta connections. Measurement of three phase power using two wattmeter method Single Phase Transformers: Necessity of transformer, Principle of operation, Types and construction of transformers, EMF equation, Types of Losses. Power factor improvement methods, concept of most economical power factor. Thyristor: Introduction, Static I-V	3	1		4
	40	7000	form factor and peak factor of sinusoidally varying voltage and current, phasor representation of alternating quantities, A.C. through resistance, inductance and capacitance, simple RL, RC and RLC circuits. Power, power factor, Phasor diagram solution of AC circuits. Series and parallel circuits 3-phase Power: Advantages of 3-phase power, Generation of 3-phase power, Three-phase balanced circuits, voltage and current relations in star and delta connections. Measurement of three phase power using two wattmeter method Single Phase Transformers: Necessity of transformer, Principle of operation, Types and construction of transformers, EMF equation, Types of Losses. Power factor improvement methods, concept of most economical power factor. Thyristor: Introduction, Static I-V characteristics, Thyristor turn-on methods,	3	1		4
	40	7000	form factor and peak factor of sinusoidally varying voltage and current, phasor representation of alternating quantities, A.C. through resistance, inductance and capacitance, simple RL, RC and RLC circuits. Power, power factor, Phasor diagram solution of AC circuits. Series and parallel circuits 3-phase Power: Advantages of 3-phase power, Generation of 3-phase power, Three-phase balanced circuits, voltage and current relations in star and delta connections. Measurement of three phase power using two wattmeter method Single Phase Transformers: Necessity of transformer, Principle of operation, Types and construction of transformers, EMF equation, Types of Losses. Power factor improvement methods, concept of most economical power factor. Thyristor: Introduction, Static I-V	3	1		4

	7		Electrical drives in Industries, their	2	2		4
			characteristics and starting methods and				
			speed control. and their suitability for				
			various applications.				
			various applications.	24	12		36
Suggested	1		Electrical Engineering Fundamentals by				30
books	-		Vincent Deltoro				
			vincent Deitoro				
reference			^				
books							
	2		Basic Electrical Engineering Machines by				
			Nagrath, Kothari				
	3		Basic Electrical Engineering by D.C.				
			Kulshreshtha				
	4		Principles of Electrical Engineering and				
			Electronics by V.K.Mehta				
	5		Network Analysis and Synthesis by Ravish				
			R Singh				
	6		Circuit Theory (Analysis And Synthesis by				
			A. Chakrabarti				
	7		Electrical Machines by P.S. Bhimbra				
	8		Electrical Machines by P.S. Brillibra Electrical Technology by B.L.Theraja,				
	0						
	_		A.K.Theraja Vol I,II,IV				
	9		Electronic devices and circuits by				
			Boylstead, Nashelsky				
	10		Principles of Electronics by V.K.Mehta and				
			Rohit Mehta				
	11		Thyristors and their applications by				
			M.Ramamurthy				
	12		Power Electronics by P.S. Bhimbra				
			//				
Outcomes			Students will be able to understand				
	СО		The basic concepts of D.C., single phase				
	1		and three phase AC supply and circuits				
	_		Solve basic electrical circuit problems				
	СО		The basic concepts of transformers and				
	2		motors used as various industrial drives.				
	CO		The concept of power factor improvement				
	3		for industrial installations and concept of				
			most economical power-factor				
	60						
	CO 4		The basic concepts of electronic devices				
	4		and their applications as thyristor's and				
			speeu control of drives.				
Course code			ESP4201				
Course title			Engineering Laboratory				
Scheme and			0 L: 1 T: 2 P 2 Credits				
Credits			∇*				
Pre-		6	1				
requisites		-	\				
Objectives		10	1				
of the		, Y					
course		Ò					
Course title		0,	Detailed contents	L	Т	Р	Tot
Course title	1 .	V	Electrical Engineering Experiments				101
	± 4	4	Study of RLC circuits				
	- 17	1.1	Load test on transformer				
	1/4						
	1/2	1.2					
	0	1.3	Load test on induction motor				
	200		Load test on induction motor Study of 3 phase circuits with Star				
	2	1.3 1.4	Load test on induction motor Study of 3 phase circuits with Star connected load				
	200	1.3	Load test on induction motor Study of 3 phase circuits with Star connected load Study of 3 phase circuits with Delta				
	NO P	1.3 1.4	Load test on induction motor Study of 3 phase circuits with Star connected load Study of 3 phase circuits with Delta connected load				
	2	1.3 1.4	Load test on induction motor Study of 3 phase circuits with Star connected load Study of 3 phase circuits with Delta				
	2	1.3 1.4	Load test on induction motor Study of 3 phase circuits with Star connected load Study of 3 phase circuits with Delta connected load				
	2	1.3 1.4 1.5	Load test on induction motor Study of 3 phase circuits with Star connected load Study of 3 phase circuits with Delta connected load Electronics Engineering Experiments				

	T						
		2.3	Study of input and output characteristics				
			of a transistor.				
		2.4	Study of various logic gates and their				
			application in logic circuits.				
		2.5	Study of UJT and UJT relaxation oscillator.				
		2.6	Study of operational amplifier circuits.				
	3		Mechanical Fabrication Experiments				
		3.1	For learning the designs and fabrication of				
		J. .	any mechanical/ electrical /design				
			components , Lathe machines are				
			necessary for learning operations such as				
			Turning , Spot facing , chamfering,				
		3.2	Knurling etc. For learning the welding operations such				
		3.2					
			as arc welding , butt welding, lab welding				
			etc. which will be useful to develop their				
			skills of Pressure vessel, heat exchanger				
			etc. fabrication.				
	4		Strength of Materials experiments				
		4.1	Universal Testing Machine				
		4.2	Izod Impact Testing machine				
		4.3	Brinell Hardness testing				
			Total	0	0		48
Suggested			, 0				
reference			<u> </u>				
books							
Outcomes			Students will be able to understand				
	СО		Practically the tensile strength, flexural				
	1		strength, hardness, modulus, % elongation				
			of any material				
Course code	Ì	Ì	ESP4103				
Course title			Engineering Applications of				
Course title			Computers II				
Scheme and			1 L: 0T: 4 P 3 Credits				
Credits			I I O I TO				
Pre-			10+2 leve! Mathematics				
requisites			10 12 ICVCF Hadicillatics				
Objectives	1		To make students familiar with basic				
of the	_		nemerical methods to solve simple				
course			problems arising in engineering. To devlop				
Course							
			Python programmes to solve problems in				
			nun erical analysis and anlyse its				
Detailed			qualitative behaviour.		_	_	Tot
Detailed			C [*]	L	Т	Р	Tot
contents	1		Povious of Dython bosics, Control Flam				
	1	_	keview of Python basics: Control Flow,				
		_1	Loops and functions, matplotlib. Introduction to Pandas				
	-	- 10		3	^	10	15
		. V	Brief introduction to error analysis	3	0	12	15
		λ	Numerical method of finding roots of				
		20	nonlinear equations of one and two				
		W.	variables: Bisection, Secant, Regula-Falsi				
	4	7	and Newton-Raphson methods, Newton's				
	.0	1	method for solving systems of nonlinear				
	10	1	equations				
	Ω,		(Algorithm and python programme				
	-AX		developments of these methods.)	_			
	1		Solution of Linear Algebraic Equations:	3	0	12	15
	D.		Methods like Gaussian elimination and				
	,		matrix inversion, LU decomposition.				
			Numerical solution of linear algebraic				
			equations: Jacob, Gauss-Siedel methods,				
			and relaxation iterative methods				
			Convergence criteria for various iterative				

		methods.				
		(Algorithm and python programme				
		developments of these methods.)				
	3	Interpolation and Approximation:	3	0	12	15
		Newton's forward and backward				
		interpolation, Lagrange interpolation and				
		Linear Spline interpolation.				
		(Algorithm and python programme				
		developments of these methods.)				
	4	Numerical Differentiation and Integration:	3	0	12	15
		Numerical differentiation using various				
		interpolation formulae.				
		Integration: Trapezoidal rule, Simpson's				
		rule, integration with unequal segments,				
		Quadrature methods.				
		(Algorithm and python programme				
		developments of these methods.)				
		Total	12	0	48	60
Suggested		Sandeep Nagar, Introduction to Python for				
books		Engineers and Scientists. Open Source				
Doores		Solutions for Numerical Computation-				
		Apress (2018)				
		Reema Thareja, Python Programming:				
		Using Problem Solving Approach, Oxford				
		University Press, 2017				
		Fangoh, Introduction to Python for				
		Computational Science and Engineering,				
0		Open Source, available on github.				
Outcomes		Students will able to				
	co	use Numpy, Scipy and Sympy to solve				
	1	problems related to matrices, solutions				
		linear and nonlinear equations and single				
		variable calculus.				
	CO	write Python programme to solve simple				
	2	mathematical and numercial problems.				

Stu	dy 4 (T6	5)								
			Code	Subjects	Credit	Hrs	/wee	ek		
					S		_	_		
						L	I	Р	E. S.	Tota I
26	ES	EST32 03	EST420 3	Energy Engineering	4	3	1	0	30	100
27	CE	CET32 03	CET42 03	Heat Transfer	4	3	1	0	30	100
28	CE	CET32 04	CET42 04	Mass Transfer Operations	4	2	2	0	30	100
29	S	S <i>x</i> T310	S <i>x</i> T410	Special Subject I	3	2	1	0	15	50
30	HU	HUT32 01	HUT42 01	IPR and Laws	3	2	1	0	15	50
31	CE	CEP32 01	CEP42 01	Mathematical Methods in Chemical Engineering	4	2	0	4	50	100
32	CE	CEP32 02	CEP42 02	Chemical Engineering Laboratory-l	4	0	0	8	50	100
				TOTAL	26	1	6	1 2	22 0	60 0

Course code			CET4203				
Course title			Heat Transfer				
Scheme and	-		3 L: 1 T: 0 P 4 Credits				
Credits			3 Li I ii U P 4 Credits				
Pre-			Momentum and Mass transfer, Applied				
requisites			Mathematics I and II, Material and Energy				
01.1.1.			Balance				
Objectives	1		This is a basic course that deals with heat				
of the			transfer, heat exchangers and their				
course			design. Heat transfer forms one of the				
			basic pillars of Chemical Engineering				
			Education and is required in all future				
			activities.				
Course title			Detailed contents	L	Т	Р	Tot
	1		Revision of Basics of Heat transfer: Steady	2			2
			state and unsteady state conduction,				
			Fourier's law, Concepts of resistance to				
			heat transfer and the heat transfer				
			coefficient. Heat transfer in Cartesian,				
			cylindrical and spherical coordinate				
			systems, Insulation, critical radius .				
			extended surfaces, fin performance				
			evaluation, effectiveness of fins. Transient				
		1	heat conduction.				
	2	. ~	Convective heat transfer in laminar and	3	1		4
		V	turbulent boundary layers. Theories of				
		7	heat transfer and analogy between				
		_O	momentum and heat transfer.				
	3	0	Heat transfer by natural convection. Heat	2			2
		7	transfer outside various geometries in	_			_
	0	1"	forced convection, such as, single spheres,				
	10		banks of tubes or cylinders, packed beds				
	V,		and fluidised beds				
	~~		Heat transfer in laminar and turbulent flow	3	1		4
	0,		in circular pipes: Double pipe heat		_		-
	De		exchangers: Concurrent, counter-current				
	1		and cross flows, mean temperature				
			difference, NTU – epsilon method for				
			exchanger evaluation.				
	_			0	2		10
	5		Shell and tube heat exchangers: Basic	8	2		10
			construction and features, TEMA				

	9		with de-superheating and subcooling Heat transfer to boiling liquids: Process	6	2		8
	9		design aspects of evaporators, natural and	U	2		0
		f	orced circulation reboilers				
	10		leat transfer in agitated vessels: coils, ackets, limpet coils, calculation of heat	2			2
			ransfer coefficients, heating and cooling				
		t	imes, applications to batch reactors and				
	11		Datch processes Basics of Radiative heat transfer	2			2
			Total	38	6		48
Suggested			L. Process Heat Transfer, Kern D.Q.				
reference books			2. Heat Exchangers, Kakac S., Bergles A.E., Mayinger F				
	I						
50013		3	B. Process Heat Transfer, G. Hewitt				
Outcomes	CO1	3	3. Process Heat Transfer, G. Hewitt Students will be able to				
Outcomes	CO1	9	3. Process Heat Transfer, G. Hewitt Students will be able to Calculate temperature profiles in a slab at				
Outcomes	CO1	(S	3. Process Heat Transfer, G. Hewitt Students will be able to Calculate temperature profiles in a slab at steady state Calculate heat transfer coefficients in				
Outcomes		() () () () () () () () () ()	3. Process Heat Transfer, G. Hewitt Students will be able to Calculate temperature profiles in a slab at steady state Calculate heat transfer coefficients in various equipment like double pipe heat				
Outcomes		3 (S (V	3. Process Heat Transfer, G. Hewitt Students will be able to Calculate temperature profiles in a slab at steady state Calculate heat transfer coefficients in				
Outcomes	CO2	3 (S (V (6 6	3. Process Heat Transfer, G. Hewitt Students will be able to Calculate temperature profiles in a slab at steady state Calculate heat transfer coefficients in various equipment like double pipe heat exchangers, shell and tube heat exchangers, plate heat exchangers, conclensation, evaporation, agitated tanks.				
Outcomes		3 (S (V (E (C (C	B. Process Heat Transfer, G. Hewitt Students will be able to Calculate temperature profiles in a slab at steady state Calculate heat transfer coefficients in various equipment like double pipe heat exchangers, shell and tube heat exchangers, plate heat exchangers, conclensation, evaporation, agitated tanks. Calculate heat duty/outlet				
Outcomes	CO2	5 () () () () () ()	B. Process Heat Transfer, G. Hewitt Students will be able to Calculate temperature profiles in a slab at steady state Calculate heat transfer coefficients in various equipment like double pipe heat exchangers, shell and tube heat exchangers, plate heat exchangers, condensation, evaporation, agitated tanks. Calculate heat duty/outlet emperatures/pressure drops/area required for various equipment like double pipe				
Outcomes	CO2	3 () () () () () ()	B. Process Heat Transfer, G. Hewitt Students will be able to Calculate temperature profiles in a slab at steady state Calculate heat transfer coefficients in various equipment like double pipe heat exchangers, shell and tube heat exchangers, plate heat exchangers, concensation, evaporation, agitated tanks. Calculate heat duty/outlet enperatures/pressure drops/area required for various equipment like double pipe heat exchangers, shell and tube heat				
Outcomes	CO2	3 5 0 0 0 0 0 0 0 0 0	B. Process Heat Transfer, G. Hewitt Students will be able to Calculate temperature profiles in a slab at steady state Calculate heat transfer coefficients in various equipment like double pipe heat exchangers, shell and tube heat exchangers, plate heat exchangers, conclensation, evaporation, agitated tanks. Calculate heat duty/outlet enperatures/pressure drops/area required for various equipment like double pipe heat exchangers, shell and tube heat exchangers, plate heat exchangers,				
Outcomes	CO2	3 9 9 9 9 9 9 9 9 9 9	B. Process Heat Transfer, G. Hewitt Students will be able to Calculate temperature profiles in a slab at steady state Calculate heat transfer coefficients in various equipment like double pipe heat exchangers, shell and tube heat exchangers, plate heat exchangers, concensation, evaporation, agitated tanks. Calculate heat duty/outlet enperatures/pressure drops/area required for various equipment like double pipe heat exchangers, shell and tube heat				
Outcomes	CO2	3 9 9 9 9 9 9 9 9 9 9 9 9 9 9	B. Process Heat Transfer, G. Hewitt Students will be able to Calculate temperature profiles in a slab at steady state Calculate heat transfer coefficients in various equipment like double pipe heat exchangers, shell and tube heat exchangers, plate heat exchangers, conclensation, evaporation, agitated tanks. Calculate heat duty/outlet emperatures/pressure drops/area required for various equipment like double pipe heat exchangers, shell and tube heat exchangers, plate heat exchangers, condensation, evaporation, agitated tanks. dentify and select type of shell and tube exchanger based on TEMA classification.				
Outcomes () () () () () () () () () () () () ()	CO2	S S S S S S S S S S	B. Process Heat Transfer, G. Hewitt Students will be able to Calculate temperature profiles in a slab at steady state Calculate heat transfer coefficients in various equipment like double pipe heat exchangers, shell and tube heat exchangers, plate heat exchangers, conclensation, evaporation, agitated tanks. Calculate heat duty/outlet emperatures/pressure drops/area required for various equipment like double pipe heat exchangers, shell and tube heat exchangers, plate heat exchangers, condensation, evaporation, agitated tanks. dentify and select type of shell and tube exchanger based on TEMA classification.	L	Т	P	Tot
Outcomes	CO2	5 5 7 7 8 6 7 7 7 8 8 9 9 1 9	B. Process Heat Transfer, G. Hewitt Students will be able to Calculate temperature profiles in a slab at steady state Calculate heat transfer coefficients in various equipment like double pipe heat exchangers, shell and tube heat exchangers, plate heat exchangers, conclensation, evaporation, agitated tanks. Calculate heat duty/outlet emperatures/pressure drops/area required for various equipment like double pipe heat exchangers, shell and tube heat exchangers, plate heat exchangers, condensation, evaporation, agitated tanks. dentify and select type of shell and tube exchanger based on TEMA classification.	L	T	P	Tot
Course code Course title	CO2	5 5 7 7 7 8 6 7 7 8 8 8 9 1 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1	B. Process Heat Transfer, G. Hewitt Students will be able to Calculate temperature profiles in a slab at steady state Calculate heat transfer coefficients in various equipment like double pipe heat exchangers, shell and tube heat exchangers, plate heat exchangers, conclensation, evaporation, agitated tanks. Calculate heat duty/outlet emperatures/pressure drops/area required for various equipment like double pipe heat exchangers, shell and tube heat exchangers, plate heat exchangers, condensation, evaporation, agitated tanks. dentify and select type of shell and tube exchanger based on TEMA classification. EST4203 Energy Engineering 3 L: 1 T: 0 P 4 Credits	L	T	P	Tot
Course code Course title Scheme and Credits Pre-	CO2	S S S S S S S S S S S S S S S S S S S	B. Process Heat Transfer, G. Hewitt Students will be able to Calculate temperature profiles in a slab at steady state Calculate heat transfer coefficients in various equipment like double pipe heat exchangers, shell and tube heat exchangers, plate heat exchangers, concensation, evaporation, agitated tanks. Calculate heat duty/outlet emperatures/pressure drops/area required for various equipment like double pipe heat exchangers, shell and tube heat exchangers, plate heat exchangers, condensation, evaporation, agitated tanks. dentify and select type of shell and tube exchanger based on TEMA classification. EST4203 Energy Engineering B. L: 1 T: 0 P 4 Credits Chemical Engineering Thermodynamics-I,	L	T	P	Tot
Course code Course title Scheme and Credits	CO2	S S S S S S S S S S	B. Process Heat Transfer, G. Hewitt Students will be able to Calculate temperature profiles in a slab at steady state Calculate heat transfer coefficients in various equipment like double pipe heat exchangers, shell and tube heat exchangers, plate heat exchangers, concensation, evaporation, agitated tanks. Calculate heat duty/outlet enperatures/pressure drops/area required for various equipment like double pipe heat exchangers, shell and tube heat exchangers, plate heat exchangers, condensation, evaporation, agitated tanks. dentify and select type of shell and tube exchanger based on TEMA classification. EST4203 Energy Engineering B. L: 1 T: 0 P 4 Credits Chemical Engineering Thermodynamics-I, Material and Energy Balance Calculations,	L	T	P	Tot
Course code Course title Scheme and Credits Pre-	CO2	S S S S S S S S S S	B. Process Heat Transfer, G. Hewitt Students will be able to Calculate temperature profiles in a slab at steady state Calculate heat transfer coefficients in various equipment like double pipe heat exchangers, shell and tube heat exchangers, plate heat exchangers, concensation, evaporation, agitated tanks. Calculate heat duty/outlet enperatures/pressure drops/area required for various equipment like double pipe heat exchangers, shell and tube heat exchangers, plate heat exchangers, condensation, evaporation, agitated tanks. dentify and select type of shell and tube exchanger based on TEMA classification. EST4203 Energy Engineering B L: 1 T: 0 P 4 Credits Chemical Engineering Thermodynamics-I, Material and Energy Balance Calculations, Applied Physics I and II, Applied	L	T	P	Tot
Course code Course title Scheme and Credits Pre- requisites	CO2		B. Process Heat Transfer, G. Hewitt Students will be able to Calculate temperature profiles in a slab at steady state Calculate heat transfer coefficients in various equipment like double pipe heat exchangers, shell and tube heat exchangers, plate heat exchangers, concensation, evaporation, agitated tanks. Calculate heat duty/outlet enperatures/pressure drops/area required for various equipment like double pipe heat exchangers, shell and tube heat exchangers, plate heat exchangers, condensation, evaporation, agitated tanks. dentify and select type of shell and tube exchanger based on TEMA classification. EST4203 Energy Engineering B. L: 1 T: 0 P 4 Credits Chemical Engineering Thermodynamics-I, Material and Energy Balance Calculations,	L	T	P	Tot
Course code Course title Scheme and Credits Pre-	CO2	S S S S S S S S S S	B. Process Heat Transfer, G. Hewitt Students will be able to Calculate temperature profiles in a slab at steady state Calculate heat transfer coefficients in various equipment like double pipe heat exchangers, shell and tube heat exchangers, plate heat exchangers, concensation, evaporation, agitated tanks. Calculate heat duty/outlet enperatures/pressure drops/area required for various equipment like double pipe heat exchangers, shell and tube heat exchangers, plate heat exchangers, condensation, evaporation, agitated tanks. dentify and select type of shell and tube exchanger based on TEMA classification. EST4203 Energy Engineering B L: 1 T: 0 P 4 Credits Chemical Engineering Thermodynamics-I, Material and Energy Balance Calculations, Applied Physics I and II, Applied Mathematics - I and II	L	T	P	Tot
Course code Course title Scheme and Credits Pre- requisites Objectives	CO2	S S S S S S S S S S	B. Process Heat Transfer, G. Hewitt Students will be able to Calculate temperature profiles in a slab at steady state Calculate heat transfer coefficients in various equipment like double pipe heat exchangers, shell and tube heat exchangers, plate heat exchangers, conclensation, evaporation, agitated tanks. Calculate heat duty/outlet remperatures/pressure drops/area required for various equipment like double pipe heat exchangers, shell and tube heat exchangers, plate heat exchangers, condensation, evaporation, agitated tanks. dentify and select type of shell and tube exchanger based on TEMA classification. EST4203 Energy Engineering B L: 1 T: 0 P 4 Credits Chemical Engineering Thermodynamics-I, Material and Energy Balance Calculations, Applied Physics I and II, Applied Mathematics – I and II Students will be able to understand	L	T	P	Tot
Course code Course title Scheme and Credits Pre- requisites Objectives of the	CO2	S S S S S S S S S S	B. Process Heat Transfer, G. Hewitt Students will be able to Calculate temperature profiles in a slab at steady state Calculate heat transfer coefficients in various equipment like double pipe heat exchangers, shell and tube heat exchangers, plate heat exchangers, conclensation, evaporation, agitated tanks. Calculate heat duty/outlet remperatures/pressure drops/area required for various equipment like double pipe heat exchangers, shell and tube heat exchangers, plate heat exchangers, condensation, evaporation, agitated tanks. dentify and select type of shell and tube exchanger based on TEMA classification. EST4203 Energy Engineering B L: 1 T: 0 P 4 Credits Chemical Engineering Thermodynamics-I, Material and Energy Balance Calculations, Applied Physics I and II, Applied Mathematics – I and II Students will be able to understand various equipments like steam turbine,	L	T	P	Tot

	1		Properties of Steam Boilers	4	2		6
	2	ļ	Steam turbine	3	1		4
	3		Condenser	3	1		4
	4		Steam power plant cycles	4	2		6
	5		Pumps	3	1		4
	6		Compressors and blowers	3	1		4
	7		Steam nozzles	3	1		4
	8		Belt, chain and gear drive	3	1		4
	9		Bearings	3	1		4
	10		Refrigeration	3	1		4
	11		Internal combustion engine, Otto engine,	3	1		4
			diesel engine; Jet engine cycles				
			Total	35	13		48
Suggested			1. Thermodynamics by P.K.Nag				
reference			2. Power plant by Morse				
books			3. Heat Engines by P.L.Balani				
Outcomes			Students will be able to				
	CO1		List the features and functions of steam				
			power plant				
	CO2		List the features and functions of various				
			power transmission system				
	СОЗ		List the features of refrigeration systems				
Course code	555	1	CET4204				
Course title	-	-	4 **				
		-	Mass Transfer Operations 3 L: 1 T: 0 P 4 Credits				
Scheme and Credits			5 L. 1 II UP 4 Credits				
Pre-		-	Material & Energy Balance Calculations,				
requisites			Physical Cheiistry, Organic Chemistry-I and				
requisites			II, Chem. Eng. Thermodynamics-I,				
			Momentum and Mass Transfer				
Objectives	1		This is a basic Chem. Eng. course. The				
of the	+		principles learnt in this course are required				
course							
			in almost all the courses and throughout				
Course			in almost all the courses and throughout				
Course			the professional career of Chemical				
			the professional career of Chemical Engineer	•	T	D	Tot
Course title	1		the professional career of Chemical Engineer Detailed contents	L 4	T	P	Tot
	1 2		the professional career of Chemical Engineer Detailed contents Diffusion	4	2	P	6
	1 2		the professional career of Chemical Engineer Detailed contents Diffusion Convective mass transfer and mass		_	P	
	2		the professional career of Chemical Engineer Detailed contents Diffusion Convective mass transfer and mass transfer coefficient	4 2	2	P	3
	3		the professional career of Chemical Engineer Detailed contents Diffusion Convective mass transfer and mass transfer coefficient Interfacial mass transfer	4 2	1 2	P	6
	2		the professional career of Chemical Engineer Detailed contents Diffusion Convective mass transfer and mass transfer coefficient Interfacial mass transfer Single Equilibrium Stage, Flash	4 2	2	P	3
	3		the professional career of Chemical Engineer Detailed contents Diffusion Convective mass transfer and mass transfer coefficient Interfacial mass transfer Single Equilibrium Stage, Flash Calculations and Cascade systems: Binary	4 2	1 2	P	6 6
	3		the professional career of Chemical Engineer Detailed contents Diffusion Convective mass transfer and mass transfer coefficient Interfacial mass transfer Single Equilibrium Stage, Flash Calculations and Cascade systems: Binary vapor-liquid systems, bubble-point, and	4 2	1 2	P	6 3
	3		the professional career of Chemical Engineer Detailed contents Diffusion Convective mass transfer and mass transfer coefficient Interfacial mass transfer Single Equilibrium Stage, Flash Calculations and Cascade systems: Binary vapor-liquid systems, bubble-point, and dew-point calculations, Cascade	4 2	1 2	P	6 3
	3		the professional career of Chemical Engineer Detailed contents Diffusion Convective mass transfer and mass transfer coefficient Interfacial mass transfer Single Equilibrium Stage, Flash Calculations and Cascade systems: Binary vapor-liquid systems, bubble-point, and dew-point calculations, Cascade configurations, co-current, counter-current,	4 2	1 2	P	6 3
	3 4		the professional career of Chemical Engineer Detailed contents Diffusion Convective mass transfer and mass transfer coefficient Interfacial mass transfer Single Equilibrium Stage, Flash Calculations and Cascade systems: Binary vapor-liquid systems, bubble-point, and dew-point calculations, Cascade configurations, co-current, counter-current, cross-current, and other configurations	4 2 4 4	2 1 2 2	P	6 6 6
	3	74	the professional career of Chemical Engineer Detailed contents Diffusion Convective mass transfer and mass transfer coefficient Interfacial mass transfer Single Equilibrium Stage, Flash Caculations and Cascade systems: Binary vapor-liquid systems, bubble-point, and dew-point calculations, Cascade configurations, co-current, counter-current, cross-current, and other configurations Absorption and Stripping of dilute	4 2	1 2	P	6 3
	3 4	9	the professional career of Chemical Engineer Detailed contents Diffusion Convective mass transfer and mass transfer coefficient Interfacial mass transfer Single Equilibrium Stage, Flash Calculations and Cascade systems: Binary vapor-liquid systems, bubble-point, and dew-point calculations, Cascade configurations, co-current, counter-current, cross-current, and other configurations Absorption and Stripping of dilute mixtures: Fundamentals of absorption,	4 2 4 4	2 1 2 2	P	6 6 6
	3 4	797	the professional career of Chemical Engineer Detailed contents Diffusion Convective mass transfer and mass transfer coefficient Interfacial mass transfer Single Equilibrium Stage, Flash Calculations and Cascade systems: Binary vapor-liquid systems, bubble-point, and dew-point calculations, Cascade configurations, co-current, counter-current, cross-current, and other configurations Absorption and Stripping of dilute mixtures: Fundamentals of absorption, equilibrium curves, Operating lines from	4 2 4 4	2 1 2 2	P	6 6 6
	3 4	790	the professional career of Chemical Engineer Detailed contents Diffusion Convective mass transfer and mass transfer coefficient Interfacial mass transfer Single Equilibrium Stage, Flash Calculations and Cascade systems: Binary vapor-liquid systems, bubble-point, and dew-point calculations, Cascade configurations, co-current, counter-current, cross-current, and other configurations Absorption and Stripping of dilute mixtures: Fundamentals of absorption, equilibrium curves, Operating lines from material balances, Number of equilibrium	4 2 4 4	2 1 2 2	P	6 6 6
	3 4	79,00	the professional career of Chemical Engineer Detailed contents Diffusion Convective mass transfer and mass transfer coefficient Interfacial mass transfer Single Equilibrium Stage, Flash Calculations and Cascade systems: Binary vapor-liquid systems, bubble-point, and dew-point calculations, Cascade configurations, co-current, counter-current, cross-current, and other configurations Absorption and Stripping of dilute mixtures: Fundamentals of absorption, equilibrium curves, Operating lines from material balances, Number of equilibrium stages, Kremser Equation, Stage efficiency	4 2 4 4	2 1 2 2	P	6 6 6
	3 4	79,00	the professional career of Chemical Engineer Detailed contents Diffusion Convective mass transfer and mass transfer coefficient Interfacial mass transfer Single Equilibrium Stage, Flash Calculations and Cascade systems: Binary vapor-liquid systems, bubble-point, and dew-point calculations, Cascade configurations, co-current, counter-current, cross-current, and other configurations Absorption and Stripping of dilute mixtures: Fundamentals of absorption, equilibrium curves, Operating lines from material balances, Number of equilibrium stages, Kremser Equation, Stage efficiency and column performance, Trayed and	4 2 4 4	2 1 2 2	P	6 6 6
	3 4	79,00	the professional career of Chemical Engineer Detailed contents Diffusion Convective mass transfer and mass transfer coefficient Interfacial mass transfer Single Equilibrium Stage, Flash Calculations and Cascade systems: Binary vapor-liquid systems, bubble-point, and dew-point calculations, Cascade configurations, co-current, counter-current, cross-current, and other configurations Absorption and Stripping of dilute mixtures: Fundamentals of absorption, equilibrium curves, Operating lines from material balances, Number of equilibrium stages, Kremser Equation, Stage efficiency and column performance, Trayed and packed columns, Rate based methods for	4 2 4 4	2 1 2 2	P	6 6 6
	3 4	79,00	the professional career of Chemical Engineer Detailed contents Diffusion Convective mass transfer and mass transfer coefficient Interfacial mass transfer Single Equilibrium Stage, Flash Calculations and Cascade systems: Binary vapor-liquid systems, bubble-point, and dew-point calculations, Cascade configurations, co-current, counter-current, cross-current, and other configurations Absorption and Stripping of dilute mixtures: Fundamentals of absorption, equilibrium curves, Operating lines from material balances, Number of equilibrium stages, Kremser Equation, Stage efficiency and column performance, Trayed and packed columns, Rate based methods for packed columns (HTU, NTU), Design	4 2 4 4	2 1 2 2	P	6 6 6
	3 4	79,00	the professional career of Chemical Engineer Detailed contents Diffusion Convective mass transfer and mass transfer coefficient Interfacial mass transfer Single Equilibrium Stage, Flash Calculations and Cascade systems: Binary vapor-liquid systems, bubble-point, and dew-point calculations, Cascade configurations, co-current, counter-current, cross-current, and other configurations Absorption and Stripping of dilute mixtures: Fundamentals of absorption, equilibrium curves, Operating lines from material balances, Number of equilibrium stages, Kremser Equation, Stage efficiency and column performance, Trayed and packed columns, Rate based methods for packed columns (HTU, NTU), Design considerations: loading and flooding	4 2 4 4	2 1 2 2	P	6 6 6
	3 4	79,00	the professional career of Chemical Engineer Detailed contents Diffusion Convective mass transfer and mass transfer coefficient Interfacial mass transfer Single Equilibrium Stage, Flash Calculations and Cascade systems: Binary vapor-liquid systems, bubble-point, and dew-point calculations, Cascade configurations, co-current, counter-current, cross-current, and other configurations Absorption and Stripping of dilute mixtures: Fundamentals of absorption, equilibrium curves, Operating lines from material balances, Number of equilibrium stages, Kremser Equation, Stage efficiency and column performance, Trayed and packed columns, Rate based methods for packed columns (HTU, NTU), Design considerations: loading and flooding zones, pressure drop and column diameter	4 2 4 4	2 2 2	P	6 6 6
	3 4	79,00	the professional career of Chemical Engineer Detailed contents Diffusion Convective mass transfer and mass transfer coefficient Interfacial mass transfer Single Equilibrium Stage, Flash Calculations and Cascade systems: Binary vapor-liquid systems, bubble-point, and dew-point calculations, Cascade configurations, co-current, counter-current, cross-current, and other configurations Absorption and Stripping of dilute mixtures: Fundamentals of absorption, equilibrium curves, Operating lines from material balances, Number of equilibrium stages, Kremser Equation, Stage efficiency and column performance, Trayed and packed columns, Rate based methods for packed columns (HTU, NTU), Design considerations: loading and flooding zones, pressure drop and column diameter Distillation of binary mixtures: Differential	4 4 4	2 1 2 2	P	6 6 6
	3 4	79,00	the professional career of Chemical Engineer Detailed contents Diffusion Convective mass transfer and mass transfer coefficient Interfacial mass transfer Single Equilibrium Stage, Flash Calculations and Cascade systems: Binary vapor-liquid systems, bubble-point, and dew-point calculations, Cascade configurations, co-current, counter-current, cross-current, and other configurations Absorption and Stripping of dilute mixtures: Fundamentals of absorption, equilibrium curves, Operating lines from material balances, Number of equilibrium stages, Kremser Equation, Stage efficiency and column performance, Trayed and packed columns, Rate based methods for packed columns (HTU, NTU), Design considerations: loading and flooding zones, pressure drop and column diameter Distillation of binary mixtures: Differential distillation, Flash or equilibrium distillation,	4 4 4	2 2 2	P	6 6 6
	3 4	79,00	the professional career of Chemical Engineer Detailed contents Diffusion Convective mass transfer and mass transfer coefficient Interfacial mass transfer Single Equilibrium Stage, Flash Calculations and Cascade systems: Binary vapor-liquid systems, bubble-point, and dew-point calculations, Cascade configurations, co-current, counter-current, cross-current, and other configurations Absorption and Stripping of dilute mixtures: Fundamentals of absorption, equilibrium curves, Operating lines from material balances, Number of equilibrium stages, Kremser Equation, Stage efficiency and column performance, Trayed and packed columns, Rate based methods for packed columns (HTU, NTU), Design considerations: loading and flooding zones, pressure drop and column diameter Distillation of binary mixtures: Differential distillation, Flash or equilibrium distillation, Fractionating column and multistage	4 4 4	2 2 2	P	6 6 6
	3 4	79,00	the professional career of Chemical Engineer Detailed contents Diffusion Convective mass transfer and mass transfer coefficient Interfacial mass transfer Single Equilibrium Stage, Flash Calculations and Cascade systems: Binary vapor-liquid systems, bubble-point, and dew-point calculations, Cascade configurations, co-current, counter-current, cross-current, and other configurations Absorption and Stripping of dilute mixtures: Fundamentals of absorption, equilibrium curves, Operating lines from material balances, Number of equilibrium stages, Kremser Equation, Stage efficiency and column performance, Trayed and packed columns, Rate based methods for packed columns (HTU, NTU), Design considerations: loading and flooding zones, pressure drop and column diameter Distillation of binary mixtures: Differential distillation, Flash or equilibrium distillation, Fractionating column and multistage column, design and analysis factors,	4 4 4	2 2 2	P	6 6 6
	3 4	79,00	the professional career of Chemical Engineer Detailed contents Diffusion Convective mass transfer and mass transfer coefficient Interfacial mass transfer Single Equilibrium Stage, Flash Calculations and Cascade systems: Binary vapor-liquid systems, bubble-point, and dew-point calculations, Cascade configurations, co-current, counter-current, cross-current, and other configurations Absorption and Stripping of dilute mixtures: Fundamentals of absorption, equilibrium curves, Operating lines from material balances, Number of equilibrium stages, Kremser Equation, Stage efficiency and column performance, Trayed and packed columns, Rate based methods for packed columns (HTU, NTU), Design considerations: loading and flooding zones, pressure drop and column diameter Distillation of binary mixtures: Differential distillation, Flash or equilibrium distillation, Fractionating column and multistage column, design and analysis factors, degrees of freedom, specifications, reflux,	4 4 4	2 2 2	P	6 6 6
	3 4	79,000	the professional career of Chemical Engineer Detailed contents Diffusion Convective mass transfer and mass transfer coefficient Interfacial mass transfer Single Equilibrium Stage, Flash Calculations and Cascade systems: Binary vapor-liquid systems, bubble-point, and dew-point calculations, Cascade configurations, co-current, counter-current, cross-current, and other configurations Absorption and Stripping of dilute mixtures: Fundamentals of absorption, equilibrium curves, Operating lines from material balances, Number of equilibrium stages, Kremser Equation, Stage efficiency and column performance, Trayed and packed columns, Rate based methods for packed columns (HTU, NTU), Design considerations: loading and flooding zones, pressure drop and column diameter Distillation of binary mixtures: Differential distillation, Flash or equilibrium distillation, Fractionating column and multistage column, design and analysis factors, degrees of freedom, specifications, reflux, reflux ratio, need for reflux, McCabe-	4 4 4	2 2 2	P	6 6 6
	3 4	79,00	the professional career of Chemical Engineer Detailed contents Diffusion Convective mass transfer and mass transfer coefficient Interfacial mass transfer Single Equilibrium Stage, Flash Calculations and Cascade systems: Binary vapor-liquid systems, bubble-point, and dew-point calculations, Cascade configurations, co-current, counter-current, cross-current, and other configurations Absorption and Stripping of dilute mixtures: Fundamentals of absorption, equilibrium curves, Operating lines from material balances, Number of equilibrium stages, Kremser Equation, Stage efficiency and column performance, Trayed and packed columns, Rate based methods for packed columns (HTU, NTU), Design considerations: loading and flooding zones, pressure drop and column diameter Distillation of binary mixtures: Differential distillation, Flash or equilibrium distillation, Fractionating column and multistage column, design and analysis factors, degrees of freedom, specifications, reflux,	4 4 4	2 2 2	P	6 6 6

	1				1		
			lines, minimum and optimum reflux ratio,				
			Tray and column efficiency , Packed				
			column distillation: rate based methods:				
			HETP, HTU, Ponchon Savarit method ,				
			Batch, azeotropic, and extractive				
			distillation, Distillation equipment and				
			sizing				
	7		Drying of solids: Mechanism of drying,	4	2		6
			drying rate curves, Estimation of drying				
			time , Drying Equipment, operation,				
			Process design of dryers, material and				
			energy balances in direct dryers, Drying of				
			bioproducts				
			Total	34	14		48
Suggested		1	Richardson, J.F., Coulson, J.M., Harker, J.H.,				
reference			Backhurst, J.R., 2002. Chemical				
books			engineering: Particle technology and				
			separation processes. Butterworth-				
			Heinemann, Woburn, MA.				
			. 5				
	†	2	Seader, J.D., Henley, E.J., 2005. Separation				
		-	Process Principles, 2 ed. Wiley, Hoboken,				
			N.J.				
	+	3	Svarovsky, L., 2000. Solid-Liquid				
			Separation. Butterworth-Heinemann,				
			Woburn, MA.				
	+	4	McCabe, W., Smith, J., Harriott, P., 2004.				
		"	Unit Operations of Chemical Engineering,				
			7 ed. McGraw-Hill				
			Science/Engineering/Math, Boston.				
	+	5	McCabe, W., Smith, J., Harriott, P., 2004.				
			Unit Operations of Chemical Engineering,				
			7 ed. McGraw-Hill				
			Science/Engineering/Math, Boston.				
		6	Green, D., Perry, R., 2007. Perry's				
		0	Chemical Engineers' Handbook, Eighth				
			Edition, 8 ed. McGraw-Hill Professional,				
			Edinburgh.				
	+	7	Dutta, B.K., 2007. Principles of Mass				
		'					
			Transfer and Separation Process. Prentice- Hall of India Pvt. Ltd, New Delhi.				
Outcomes	+						
Outcomes	CO1		Students will be able to				
	CO1		Know the significance and usage of				
			different particulate characterization				
			parameters, and equipment to estimate				
	CO2		them				
	CO2	6	Describe Size reduction energy				
		-	requirements, estimate performance of				
		V	equipment, selection and sizing of				
	CO3	_ v	equipment				
	CO3	0	Analyze filtration data and select systems				
		0,	based on requirements, estimate filtration				
		0	area for given requirements, understand				
	COA	10	filter aids and their usage				
	CO4		Draw T-y-x diagrams, and y-x diagrams,				
	~		operating lines, feed line, bubble point,				
	-V		dew point calculations, ternary phase				
	0.		diagrams, partition coefficient				
	Ç05		Describe two common modes of drying,				
	I COS		industrial drying equipment		 	-	
	CO6		Calculate mass transfer coefficient in				
			various equipment, Calculate height and				
			diameter required, minimum solvent				
			required in absorption, calculate height				

		and diameter required, minimum reflux				
	1	required in distillation				
Course code	1	HUT4201				
Course title		IPR and Laws	_			
Scheme and Credits		2 L: 1 T: 0 P 3 Credits	L	Т	Р	Tota I
Pre- requisites						
Objectives of the course	1	To provide basic knowledge about all the branches of IPR viz. Copyrights, Trademarks, Patents, Geographical Indicators, Industrial Designs, etc				
	2	To provide the knowledge about national and international aspects of IPR				
	3	To provide advanced knowledge about Indian Patent Law				
	4	To impart knowledge about filing a patent, performing a patent search, drafting a patent and infringement analysis				
Course title		Detailed contents				
	1	Introduction, History of IPR (history of patents in particular), Rationale behind IPR, Economics of IPR, features of IPR.	2	1	0	3
	2	Introduction to patents, trademarks, copyrights, geographical indicators, industrial designs, trade secrets	2	1	0	3
	3	Definition of patent, Term of patent, patentabilty criteria, inventions not patententable, Process and product patents	6	3	0	9
		(Case studies), Patent Co operation Treaty: Basics, PCT time lines, Types of patents				
	4	Indian Patent Act	8	4	0	12
		History, Salient features of: Indian Patent Act 1970/1999 amendment, 2002 amendment, 2005 amendment, WTO- TRIPs and Indian legislation				
		Use of TRIPS flexibilities in Indian Patent law				
		Section 3(d), Pre grant opposition, Compulsory licencing (with case studies)				
	5	Procedure for Patent application	6	3	0	9
		Who can file a patent, Where to file a patent, Patent office procedures				
		Practical aspects of patenting: Patent search, acquiring a patent, patent specification and it parts, patent claims,				
		infringement analysis				

Case studies/ additional information for patenting in various chemical technology fields – national and international.
e.g. Salient features of patenting in the US: The Hatch Waxman Act with reference to generic Drugs, The Orange book, The contents of ANDA and bioequivalence.
Patent Certification (Para-I, Para-II, Para-III and Para-IV)

Total Indian Patent Act

Suggested reference books

Outcomes

Handbook of Patenting: Parikshit Bansal

Students will be able to

About Integrated Master of Technology Program

Course instruction and Grading System

12 0

36

24

Distinguish between different types of CO1

intellectual property List conditions for filing intellectual CO2 property protections

Course code			CEP4202				
Course title			Chemical Engineering Laboratory-I				
Scheme and			0 L: 0 T: 8 P 4 Credits				
Credits							
Pre-			Momentum Transfer, Chemical Engineering				
requisites			Thermodynamics 1, Mass transfer				
Objectives	1		Chemical Engineering lab provides				
of the			students the first hand experience of				
course			verifying various theoretical concepts learnt in theory courses				
	2		It also exposes them to practical versions				
	_		of typical chemical engineering				
			equipments and servers as a bridge				
			between theory and practice				
	3		This particular lab focuses on fluid				
			dynamics, thermodynamics and mass				
			transfer				
			0,				
Detailed contents			, 0`	L	Т	Р	Tot
	1		<u>/</u>			5	50
	_		Fluid Flow (9-11 experiments)			o l	
	2		V			1	10
			Fluidization (1-2 experiments)			0	
	3		<i>(N)</i>			1	10
			Sedimentation (1-2 experiments			0	
	4		The second on a Δ (2.4 second decords)			1	16
	_		Thermodynamics (3-4 experiments)			6 1	10
	5		Mass transfer (1-2 experiments)			0	10
			Total	0	0	9	96
			Ottal			6	30
Outcomes			(,				
			Students will be able to				
	CO1		Learn how to experimentally verify various				
			theoretical principles				
	CO2		Visualize practical implementation of				
			chemical engineering equipments				
	CO3		Capability to visualize and understand				
			chemical engineering unit operations				
			related to fluid and particle mechanics, and mass transfer				
	CO4		Able to clearly communicate the results of				
		7	experimental work in oral and written				
		10	formats.				
		V					
Course code		.0	CEP4201				
Course title		O	Mathematical Methods in Chemical				
Scheme and	Å	4	Eng. 2 L: 1 T: 2 P 4 Credits				
Credits	O ₁ C)	2 E. I I. Z I 4 Cicuits				
Pre-	1		Applied Mathematics – I and II, Momentum				
requisites	~		and Mass Transfer, Chem. Eng. Operations,				
	·Q.		Chem. Engg. Thermodynamics I and II				
Objectives	Ď-3		In this course advanced mathematical				
of the	7		tools are covered which will help students				
course			to solve complex problems in Chemical				
			Engineering. This course will serve as a				
			bridge between the applied mathematics				
			courses and their application to Chemical				

		Engineering problems. Specifically, the				
		techniques learnt in this course will help				
		problem formulation and solution in				
		Chemical Reaction Engineering, Chemical				
		Process Control, Heat Transfer and				
		Transport Phenomena.				
Course title		Detailed contents	L	Т	Р	Tot
	1	Vector algebra: scalar & vector product	2		4	6
		(application to fluid flow problems)				
	2	PDEs: Types, solution (penetration theory,	4		8	12
		2D conduction, counter-current heat				
		exchanger, reaction-diffusion, dispersion				
		model, etc.)				
	3	Fourier transforms (diffusion equations)	2		4	6
	4	Linear algebra (matrix theory) (stability	4		8	12
		analysis, scaling of equations)				
	5	Bifurcation analysis (sensitivity analysis)	4		8	12
	6	Perturbation analysis (for boundary flow	4		8	12
		problems, solution of equations, model				
		reduction etc.)				
	7	Optimization (Linear)	4		8	12
		Total	24	0	48	72
Suggested		^				
reference		, 0				
books		<u> </u>				
Outcomes		Students will be able to				
	СО	Formulate a Chemical Engineering				
	1	problem into a mathematical problem				
	СО	Solve (analytically or numerically) ODE				
	2	and PDE equations encountered in				
		Chemical Engineering Applications				
	СО	Assess stability of Chemical Engineering				
	3	systems				
	-	N N		1		
		-0				

Stu	dy 5 (T8)										
			Subjects	Credits	Hrs			Hrs/week		E. S.	Total
					L	Т	Р				
31		Γ430 4	Material Science and Engineering	3	2	1	0	15	50		
32			Special II	3	2	1	0	15	50		
33		T43)1	Chemical Reaction Engineering	4	3	1	0	30	100		
34		T43)4	Separation Processes	4	3	1	0	30	100		
35		T43 02	Biochemical Engineering	3	2	1	0	15	50		
36		P43 01	Chemical Engineering Laboratory-II	4	0	0	8	50	100		
37		P43 L1	Process Simulation Lab – I	2	0	0	4	25	50		
38			Special Lab -I	2	0	0	4	25	50		
			TOTAL	25	1 2	5	1 6	20 5	550		

Course code		CET4301				
Course title		Chemical Reaction Engineering				
Scheme and		3 L: 1 T: 0 P 4 Credits				
Credits		.()				
Pre-		Physical Chemistry, Material & Energy				
requisites		Balance Calculations, Applied Mathematics				
		I and II, Momentum and Mass Transfer,				
		Chem Engg Thermodynamics I and II				
Objectives	1	Chemical Reaction Engineering is				
of the		concerned with the utilisation of chemical				
course		reactions on a commercial scale. This				
		course is very relevant but not limited to				
		the following industries: Inorganic				
		chemicals, organic chemicals, petroleum &				
		petrochemicals, Pulp & paper, Pigments &				
		paints, rubber, plastics, synthetic fibres,				
		Foods. Dyes and intermediates, Oils,				
		oleochemicals, and surfactants, Minerals,				
		cleansing agents, Polymers and textiles,				
		Biochemicals and biotechnology,				
		pharmaceuticals and drugs, Microelectronics, energy from conventional				
		and non-conventional resources, Metals				
Course title		Detailed contents	L	Т	Р	Tot
Chemical	1	Batch reactor (BR), continuous stirred tank		•		2
Reaction		reactor (CSTR), plug flow reactor (PFR),				_
Engineering		packed-bed reactor (PBR)				
Linginicaring	2	Design equations for BR, CSTR, PFR, PBR,				6
	_	and applications of design equations to				
		various series- and parallel- combinations				
		of flow reactors				
	3 /	Rate laws and stoichiometry				4
	41	Isothermal reactor design applied to BR,				6
	~	CSTR, PFR, PBR				
	×	Analysis of rate data: differential method,				4
	Ο,	integral method				_
	76	Multiple reactions				4
	7 7	Reaction mechanisms, pathways,				4
	-	bioreactions				_
	8	Catalysis and catalytic reactors, catalyst				6
		deactivation, external diffusion effects on				
		heterogeneous reactions, diffusion and				

	1		reaction is called actalyate.			I	
	9		reaction in solid catalysts; Introduction to non-isothermal reactor				4
			design				-
	10		Residence time distribution in reactors; models for non-ideal reactors				4
	11		Mass transfer with chemical reaction in				4
			fluid-fluid and fluid-fluid-solid systems;				
			Model contactors, pilot plants, and				
			collection of scale-up data Total				48
			local				70
Suggested			Elements of Chemical Reaction				
books			Engineering - H. Scott FOGLER				
/reference books			Chemical Reaction Engineering - Octave LEVENSPIEL				
			The Engineering of Chemical Reactions -				
			Lanny D. SCHMIDT				
			An introduction to Chemical Engineering				
			Kinetics and Reactor Design - Charles HILL Heterogeneous Reactions, Vol. I and II - L.				
			K. Doraiswamy, M. M. Sharma				
Course code			Outcomes				
& title			Students will be able to				
	СО		design chemical reactors optimally, using				
	CO		minimum amount or data design experiments in a judicious way to				
	2		get the required data, if not available				
	CO		fix some problems related to operability				
	3		and productivity				
	СО		maintain and operate a process in a safe				
	4		manner				
	CO 5		increase capacity and/or selectivity and/or safety by improving/changing the reactor				
	3		type/sequence and/or operating conditions				
Course code			EST4304				
Course title			Material Science and Engineering				
Scheme and			2 L: 1 T: 0 P 3 Credits				
Credits			St. 1 In the state of the state				
Pre- requisites			Structural Mechanics, Applied Physics I and II				
Objectives	1		Selection of MOC for a given application,				
of the	_		maintenance and corrective measures for				
course			various engineering materials.				
Course title			Detailed contents	L	Т	Р	Tot
Material Science and	1		Engineering Materials: Classification, study of ferrous and non-ferrous materials				2
Engineering	2	4	Phase diagrams of steel, brass and the				3
gcci.iiig	_	-	applications of phase diagrams				
	3	10	Effect of structure on properties:				3
		7	subatomic to macroscopic level				
	4	20	Modification and control of material				4
	5	,v	properties Polymeric materials , Ceramic materials,				4
	J ^	10	Composite materials and Smart materials				_
	6(1	Corrosion Engineering: Electrochemical				8
	V)		principles, different types of corrosion,				
	201		Polarisation, mechanisms of corrosion				
	Del		control and prevention, preventive coatings. Corrosion behavior of important				
	A.		alloys such as stainless steels, brass etc.				
	7		Theory of failure: Crystal defects, plastic				8
			deformation. Types of mechanical failure,				
			fracture , fatigue and creep				_
	8	1	Criteria for selection of materials in				4

	Τ	chemical process industry				
		chemical process industry Total				36
Suggested		iotai				30
books						
Suggested	1	The Essence of Materials for Engineers,				
books	-	Robert W. Messler, Jr.				
/reference	2	Materials Science and Engineering,				
books	-	Raghavan V.				
	3	Materials Science and Engineering, Van				
		Vlack L.H.				
	4	Engineering Materials and Applications,				
		Flin R.A., Trojan P.K.				
Outcomes		7				
		Outcomes				
		Students will be able to				
	CO	Students will be able to draw simple Phase				
	1	Diagram				
	СО	Describe causes of mechanical failure				
	2	N1				
	СО	List types of corrosion and describe				
	3	method to control them				
	СО	0				
	4	0,				
Course code		CET4304				
Course title		Separation Processes				
Scheme and		3 L: 1 T: 0 P 4 Credits				
Credits		\varphi				
Pre-		Material & Energy Balance Calculations,				
requisites		Chemical Engineering Operations - I,				
		Chem. Eng. Thermodynamics-I and II,				
		Momentum Transfer, Applied Mathematics				
		I and II				
Objectives	1	This is a course further built up on and in				
of the		continuation with Chem. Engg. operations.				
course		It forms the basis oc Chemical Engineering				
		Principles and hence it is required in				
		almost all the courses and throughout the				
		professional career of a Chemical				
Course title	1	Engineer.		-	_	Tak
Course title Separation	1	Detailed contents	L	Т	Р	Tot
	-	Extraction and Leaching of ternary				15
Processes		systems: Ternary diagrams, Hunter-Nash graphical method and Maloney-Schubert				
		graphical method and Majoney-Schubert graphical equilibrium-stage method,				
		Solvent Selection, Operating point,				
		rumber of stages, maximum solvent to				
		reed ratios, minimum reflux, minimum				
		number of stages, Introduction to reactive				
		extraction, aqueous two phase extraction,				
		extraction of biomolecules, supercritical				
		fluid extraction, Solid-liquid extraction:				
		Solid - liquid equilibria, efficiency,				
		performance evaluation, Equipment for				
		extraction, leaching and their sizing,				
),	Design considerations				
	2	Adsorption and Ion exchange: Liquid				8
	Q	Adsorption, Ion-Exchange Equilibria,				
	0,	Equilibria in Chromatography,				
	Del	Breakthrough Curves, Kinetic and				
	1	transport considerations, Convection-				
		Dispersion Model, Separation Efficiency				
		(Plate Height or Bandwidth), Correlations				
		for Transport-Rate Coefficients, Equipment				
		for sorption operations, Scale-Up and				
	•					

		Process Alternatives, Adsorptive		
		Membranes, simulated-moving-bed		
		operation, modes of operation		
	3	Crystallization: Theory of solubility and		8
		crystallization, phase diagram		
		(temp/solubility relationship),		
		Supersaturation, Nucleation, Crystal		
		Growth, Population balance analysis,		
		method of moments for rate expressions		
		for, volume, area and length growth, CSD		
		distribution, MSMPR operation,		
		evaporative and cooling (rate expressions)		
		, most dominant size, ideal classified bed,		
		Precipitation, Melt crystallization, Process		
		design of crystallizers and their operation		
	4	Humidification and Cooling Towers: Method		9
		of changing humidity and equipment,		
		Cooling tower process design, counter-		
		current, concurrent and cross current,		
		mass and heat balances in bulk and		
		interfaces, Estimation of air quality,		
		performance evaluation of cooling towers.		
	5	Membrane Separations. Types of		8
		separations, reverse os nosis,		
		ultrafiltration, gas separation, vapour		
		permeation and pervaporation, dialysis,		
		electrodialysis, nanofiltration, Transport		
		Through Porous Membranes, Resistance		
		Models, Liquid Diffusion Through Pores,		
		Gas Diffusion Through Porous Membranes,		
		Transport Through Nonporous Membranes,		
		Solution-Diffusion for Liquid Mixtures, Gas		
		Mixtures, Concentration Polarization and		
		Fouling, Membrane modules, arrangement		
		of modules in cascades, performance		
		criteria and design considerations		
		Total		48
Suggested	1	Richardson, J.F., Coulson, J.M., Harker, J.H.,		
books		Backhurst, J.R., 2002. Chemical		
/reference		engineering: Particle technology and		
books		separation processes. Butterworth-		
		Heinemann, Woburn, MA.		
	2	Seader, J.D., Henley, E.J., 2005. Separation		
		Process Principles, 2 ed. Wiley, Hoboken,		
		N.J.		
	3	McCabe, W., Smith, J., Harriott, P., 2004.		
		Unit Operations of Chemical Engineering, 7		
		ed. McGrawHill Science/Engineering/Math,		
		Boston.		
	4	Green, D., Perry, R., 2007. Perry's		
		Chemical Engineers' Handbook, Eighth		
		Edition, 8 ed. McGrawHill Professional,		
		Edinburgh.		
	5	Dutta, B.K., 2007. Principles of Mass		
	3 4	Transfer and Separation Process. Prentice-		
	0,	Hall of India Pvt. Ltd, New Delhi.		
Outcomes	~	Trail of maid I vt. Ltd, NCW Dellii.		
Juccomes	Q	Students will be able to		
	CO	List situations where liquid-liquid		
	50	extraction might be preferred to		
	4	distillation, Make a preliminary selection of		
		a solvent using group-interaction rules,		
		Size simple extraction equipment		
	CO 2	Differentiate between chemisorption and physical adsorption, List steps involved in		
		T DOVSICAL AUSOLDHOOL LIST STEDS INVOIVED IN		

		adsorption of a solute, and which steps				
		may control the rate of adsorption, Explain				
		the concept of breakthrough in fixed-bed				
		adsorption				
	CO	Explain how crystals grow, Explain the				
	3	importance of supersaturation in				
		crystallization. Describe effects of mixing				
		on supersaturation, mass transfer, growth,				
		and scale-up of crystallization				
	СО	Explain membrane processes in terms of				
	4	the membrane, feed, sweep, retentate,				
		permeate, and solutemembrane				
		interactions. Distinguish among				
		microfiltration, ultrafiltration,				
		nanofiltration, virus filtration, sterile				
		filtration, filter-aid filtration, and reverse				
		osmosis in terms of average pore size.				
	СО	Explain common idealized flow patterns in				
	5	membrane modules.				
	co					
	6	\v				
	СО	A 7				
	7	2.				
Course code	 	CET4302				
Course title	1	Biochemical Engineering				
Scheme and		2 L: 1 T: 0 P 3 Credits				
Credits	-					
Pre-		Chemical Reaction Engineering,				
requisites		Introduction to Biological Sciences and				
		Bioengineering Physical Chemistry,				
		Material and Energy Balance Calculations,				
		Chem Engg Thermodynamics I and II,				
		Chem Engg Operations				
Objectives	1	This course integrates Biological sciences				
of the		and chemical engineering and a requisite				
course		for Biobased Industry				
Course title		Detailed contents	L	Т	Р	Tot
Biochemical	1	Introduction to Biotechnology: Role of				4
Engineering		chemical engineers in biotechnology. Basic				
		of Genetic Engineering and Tissue				
		Culture : Recombinant DNA technology				
	2	Structure function relations of enzymes;				8
		Classification, Mechanism of Enzyme				
		action, Enzyme kinetics, inhibition and				
		regulation, Enzyme purification and				
		characterization, Coenzymes, cofactors,				
		Enzyme reactors, thermostabilization,				
		immobilization of enzymes, Enzymes as				
		industrial catalysts- Examples				
	3	Bioprocess Development, Plant and animal				12
		cell cultures for the production of				
		biochemicals, Immobilized cells, Kinetics of				
		microbial growth, models and simulations,				
		Batch and continuous culture, Mixed				
	,(microbial culture, Biochemical process				
	2	development and bioreactors using				
	.0	biological catalysts, Integration of				
	D)	downstream processing with bioprocessing				
	00	Transport phenomena in bioreactions and				4
	γ	bioreactors				
	5	Fundamentals of fermentation-submerged				4
	_					
		fermentation, Fermenter design and basic				
		fermentation, Fermenter design and basic biochemical engineering aspects of				
		fermentation, Fermenter design and basic				

	6		Reactor design for biochemical reactions				4
			and scale up, Process Design for				
			bioproducts, Bioreactor design, Scale up of				
			bioreactions/reactors,				
	7						
			Total				36
Suggested	1		Biochemical Engineering Fundamentals,				
books			Bailey and Olis, Wiley				
reference	2		Biotransformations and Bioprocesses,				
books			Doble,Anilkumar and Gaikar, Marce				
•			Dekker				
Outcomes			C				
			Students will be able to				
	CO		calculate microbial/enzymatic kinetics				
	1		parameters				
	CO 2		Design enzyme reactors and scale up				
	CO		fermenters				
	3		calculate biomass production/substrate				
	CO		requirements decide process parameters				
	4		decide process parameters				
	CO		estimate energy equipments/oxygen				
	5		requirements				
	CO		estimate bio-reactor size/time for a given				
	6		microbial/enzymatic process.				
			/ 3				
Course code			CEP4301				
Course title			Chemical Engineering Laboratory-II				
Scheme and			0 L: 0 T: 8 P 4 Credits				
Credits Pre-			Heat Transfer Mass Transfer				
requisites			Heat Transfer, Mass Transfer				
Objectives	1		Chemical Engineering lab provides				
of the			students the first hand experience of				
course			verifying various theoretical concepts				
course			learnt in theory courses				
	2		It also exposes them to practical versions				
	_		of typical chemical engineering				
			equipments and servers as a bridge				
			between theory and practice				
	3		This particular lab focuses on heat transfer				
			and mass transfer				
			Ŏ.				
Detailed			N°	L	Т	Р	Tot
contents			(9				
	1		Heat Transfer (6-7 experiments)			50	
	2		Mass Transfer (3-4 experiments)			10	
	3		Sedimentation (1-2 experiments			10	
	4	v.	Thermodynamics (3-4 experiments)			16	
	5	. V	Mass transfer (1-2 experiments)			10	
		λ	Total	0	0	96	96
Outcomes		2					
		V	Students will be able to				
	CO	1-3	Learn how to experimentally verify various				
	1,(1	theoretical principles				
	CQ/		Visualize practical implementation of				
	20		chemical engineering equipments				
	60		Capability to visualize and understand				
	00		chemical engineering unit operations				
	1		related to fluid and particle mechanics,				
	1		and mass transfer				
			Abla ta alaami, aananan alaat atta oo sooti C				
	CO		Able to clearly communicate the results of				
	CO 4		Able to clearly communicate the results of experimental work in oral and written formats.				

Course code		CEP4311				
Course title		Process Simulation Lab-1				
Scheme and		0 L: 0 T: 4 P 2 Credits				
Credits						
Pre-		Chemical Engineering Thermodynamics,				
requisites		Separation process				
Objectives	1	To learn write programs on Chemical				
of the		Engineering processes and equipment				
course		Δ, Δ,				
	2	To learn the design aspects equipments				
		through programming				
	3	To Learn the solving process of Chemical				
		Engineering problems through				
		computational techniques				
		O.				
Detailed		m	L	Т	Р	Tot
contents		, /				
	1	Programming of equation of state, fugacity				
		calculation, excess Gibbs energy models				
	2	Computation of vapor-liquid equilibria and				
		liquid-liquid equilibria				
	3	Bubble point and dew point calculation				
	4	Computation of absoption and stripping				
		unit				
	5	Computation of distillation unit				
	6	Computation of multistage liquid-liquid				
		extractor				
	7	Computation of cooling tower				
		Total	0	0	48	48
Outcomes		7,				
		Students will be able to				
	СО	Able to write algorithms of chemical				
	1	engineering problems				
	СО	Able to design chemical engineering				
	2	problems and equipment				
	CO	Able to perform qualitative and				
	3	quantitative analysis of chemical				
		engineering problems computationally				
	СО	Able to clearly communicate the results of				
	4	modelling work in oral and written				
	-	formats.				
		TOTTIMES				

Stu	dy 6 (T1	.0)								
				Subjects	Credits	Hrs	/wee	k		
						L	Т	Р	E. S.	Total
39	S	ST	xxT4xx x	Special Elective-III	3	2	1	0	50	100
40	S	ST	xxT4xx x	Special Elective-IV	3	2	1	0	50	100
41	CE	CET	CET44 03	Environmental Engineering and Process Safety	3	2	1	0	50	100
42	CE	CET	CET44 05	Chemical Process Control	4	3	1	0	50	100
43	CE	CEE	CET44 08	Industrial and Engineering Chemistry	4	3	1	0	50	100
44	CE	CEP	CEP44 02	Chem. Eng. Laboratory-III	4	0	0	8	50	100
45	CE	CEP	CEP44 12	Process Simulation Lab-II	2	0	0	4	50	100
46	S	SP	xxP440 2	Special Lab-II	2	0	0	4	25	50
				TOTAL	25	1 2	5	1 6	35 0	700

Course code			CET4405				
Course title			Chemical Process Control				
Scheme and			3 L: 1 T: 0 P 4 Credits				
Credits							
Pre-			Material and Energy Balance Calculations,				
requisites			Applied Mathematics I and II,				
			Mathematical Methods in Chem Engg.,				
			Momentum and Mass Transfer, Chemical				
			Reaction Engineering, Heat Transfer,				
			Chem Engg Operations, Separation				
			Processes,				
Objectives	1		Process control plays a very critical role in				
of the			the context of actual operation of a				
course			chemical plant. Most of the core chemical				
			engineering courses focus on the steady				
			state operation. In the real life				
			environment, process is continuously				
			subjected to various disturbances which				
			deviates the operation from the designed				
			steady state. This course specifically				
			prepares students to assess the impact of				
			such disturbances and equip them with				
		4	the tools available with the chemical				
		- 1	engineer to tackle these situations.				
Course title		10	Detailed contents	L	Т	Р	Tot
Chemical	1	7.	Introduction to process control: Motivation,	2	1		3
Process		.0	importance, components of control				
Control		.05	system, control relevant process modeling				
	2	7_	Dynamics of first, second and higher order	6	3		9
		1	systems: Examples systems,				
	-1	/	characterizing parameters, features, etc.	_			_
	- M		Feedback control: Motivation, elements of	3	1		4
	X		feedback control, servo problem,				
	·Q.		regulatory problem, effect of proportional,				
	Do		integral and derivative action, responses				
	1	-	of P, PI and PID controllers	_			
	4		Controller selection and design: Controller	3	1		4
			selection guidelines, controller design				
			criteria, common control loops (level,				
			pressure, flow, temperature), reactor				

	1	control distillation control				
	5	control, distillation control Controller tuning: Open loop tuning,	3	1		4
) 3		3			4
		closed loop tuning, direct synthesis,				
		commercial controller tuning packages	3	1		4
	6	Stability analysis: Laplace domain	3			4
		analysis, frequency domain analysis		_		
	7	Introduction to Multivariable and	6	3		9
		advanced control: Cascade control,				
		dynamic matrix control, internal model				
		control, basics of ratio control, split range				
		control, override control, adaptive control,				
		inferential control, model predictive				
		control, geometric control	_	_		_
	8	Digital control: Discrete time systems,	3	1		4
		basics of z-transforms, stability analysis	_			_
	9	Electronics for control systems:	3	1		4
		Distributed control system, Programmable				
		Logic Controllers, SCADA, HMI				
	10	Instrumentation: Basic measurement	2	1		3
		devices and working principles for level,				
		flow, pressure and temperature, types of				
		control valves, etc.				
		Total	34	14	0	48
		, 0				
Suggested		Stephanopoulos, G.Chemical Process				
books		Control: An Introduction to Theory and				
/reference		Practice.				
books		Bequette, B.W.Process Control: Modeling,				
		Design, and Simulation.				
		Seborg, D.E. and Mellichamp, D.A. and				
		Edgar, T.F. and Doyle, F.J.Process Dynamics				
		and Control.				
		Johnson, C.D.Process Control				
		Instrumentation Technology.				
		/ 0				
Course code		Outcomes				
6		*				
& title		Students will be able to				
& title	СО	Students will be able to Understand the importance of process				
& title	CO 1	Understand the importance of process				
& title	1	Understand the importance of process dynamics (unsteady state operation)				
& title	I	Understand the importance of process dynamics (unsteady state operation) Design a control strategy for key unit				
& title	CO	Understand the importance of process dynamics (unsteady state operation) Design a control strategy for key unit operations (reactor, distillation column,				
& title	CO	Understand the importance of process dynamics (unsteady state operation) Design a control strategy for key unit				
& title	CO CO	Understand the importance of process dynamics (unsteady state operation) Design a control strategy for key unit operations (reactor, distillation column, etc) Tune a controller to reject disturbances or				
& title	1 CO 2 CO 3	Understand the importance of process dynamics (unsteady state operation) Design a control strategy for key unit operations (reactor, distillation column, etc) Tune a controller to reject disturbances or manage operating point transitions				
& title	CO CO	Understand the importance of process dynamics (unsteady state operation) Design a control strategy for key unit operations (reactor, distillation column, etc) Tune a controller to reject disturbances or manage operating point transitions Understand working principles of basic				
& title	CO 3 CO	Understand the importance of process dynamics (unsteady state operation) Design a control strategy for key unit operations (reactor, distillation column, etc) Tune a controller to reject disturbances or manage operating point transitions Understand working principles of basic instruments available for flow, pressure,				
& title	1 CO 2 CO 3 CO 4	Understand the importance of process dynamics (unsteady state operation) Design a control strategy for key unit operations (reactor, distillation column, etc) Tune a controller to reject disturbances or manage operating point transitions Understand working principles of basic instruments available for flow, pressure, evel and temperature measurement				
& title	CO 3 CO	Understand the importance of process dynamics (unsteady state operation) Design a control strategy for key unit operations (reactor, distillation column, etc) Tune a controller to reject disturbances or manage operating point transitions Understand working principles of basic instruments available for flow, pressure, evel and temperature measurement Describe modern industrial control system				
	CO 3 CO 4 CO	Understand the importance of process dynamics (unsteady state operation) Design a control strategy for key unit operations (reactor, distillation column, etc) Tune a controller to reject disturbances or manage operating point transitions Understand working principles of basic instruments available for flow, pressure, evel and temperature measurement Describe modern industrial control system architecture				
Course code	CO 3 CO 4 CO	Understand the importance of process dynamics (unsteady state operation) Design a control strategy for key unit operations (reactor, distillation column, etc) Tune a controller to reject disturbances or manage operating point transitions Understand working principles of basic instruments available for flow, pressure, evel and temperature measurement Describe modern industrial control system architecture HUT4202				
	CO 3 CO 4 CO	Understand the importance of process dynamics (unsteady state operation) Design a control strategy for key unit operations (reactor, distillation column, etc) Tune a controller to reject disturbances or manage operating point transitions Understand working principles of basic instruments available for flow, pressure, evel and temperature measurement Describe modern industrial control system architecture HUT4202 Environmental Studies and Process				
Course code Course title	CO 3 CO 4 CO	Understand the importance of process dynamics (unsteady state operation) Design a control strategy for key unit operations (reactor, distillation column, etc) Tune a controller to reject disturbances or manage operating point transitions Understand working principles of basic instruments available for flow, pressure, evel and temperature measurement Describe modern industrial control system architecture HUT4202 Environmental Studies and Process Safety				
Course code Course title Scheme and	CO 3 CO 4 CO	Understand the importance of process dynamics (unsteady state operation) Design a control strategy for key unit operations (reactor, distillation column, etc) Tune a controller to reject disturbances or manage operating point transitions Understand working principles of basic instruments available for flow, pressure, evel and temperature measurement Describe modern industrial control system architecture HUT4202 Environmental Studies and Process				
Course code Course title Scheme and Credits	CO 3 CO 4 CO	Understand the importance of process dynamics (unsteady state operation) Design a control strategy for key unit operations (reactor, distillation column, etc.) Tune a controller to reject disturbances or manage operating point transitions Understand working principles of basic instruments available for flow, pressure, evel and temperature measurement Describe modern industrial control system architecture HUT4202 Environmental Studies and Process Safety 3 L: 1 T: 0 P 4 Credits				
Course code Course title Scheme and Credits Pre-	CO 3 CO 4 CO	Understand the importance of process dynamics (unsteady state operation) Design a control strategy for key unit operations (reactor, distillation column, etc.) Tune a controller to reject disturbances or manage operating point transitions Understand working principles of basic instruments available for flow, pressure, evel and temperature measurement Describe modern industrial control system architecture HUT4202 Environmental Studies and Process Safety 3 L: 1 T: 0 P 4 Credits Material & Energy Balance Calculations,				
Course code Course title Scheme and Credits	CO 3 CO 4 CO	Understand the importance of process dynamics (unsteady state operation) Design a control strategy for key unit operations (reactor, distillation column, etc.) Tune a controller to reject disturbances or manage operating point transitions Understand working principles of basic instruments available for flow, pressure, evel and temperature measurement Describe modern industrial control system architecture HUT4202 Environmental Studies and Process Safety 3 L: 1 T: 0 P 4 Credits Material & Energy Balance Calculations, Chemical Reaction Engineering, Chemical				
Course code Course title Scheme and Credits Pre-	CO 3 CO 4 CO	Understand the importance of process dynamics (unsteady state operation) Design a control strategy for key unit operations (reactor, distillation column, etc.) Tune a controller to reject disturbances or manage operating point transitions Understand working principles of basic instruments available for flow, pressure, evel and temperature measurement Describe modern industrial control system architecture HUT4202 Environmental Studies and Process Safety 3 L: 1 T: 0 P 4 Credits Material & Energy Balance Calculations, Chemical Reaction Engineering, Chemical Engineering Operations, Momentum and				
Course code Course title Scheme and Credits Pre-	CO 3 CO 4 CO	Understand the importance of process dynamics (unsteady state operation) Design a control strategy for key unit operations (reactor, distillation column, etc.) Tune a controller to reject disturbances or manage operating point transitions Understand working principles of basic instruments available for flow, pressure, evel and temperature measurement Describe modern industrial control system architecture HUT4202 Environmental Studies and Process Safety 3 L: 1 T: 0 P 4 Credits Material & Energy Balance Calculations, Chemical Reaction Engineering, Chemical Engineering Operations, Momentum and Mass Transfer, Biochemical Engg., Chem				
Course code Course title Scheme and Credits Pre- requisites	CO 3 CO 4 CO	Understand the importance of process dynamics (unsteady state operation) Design a control strategy for key unit operations (reactor, distillation column, etc.) Tune a controller to reject disturbances or manage operating point transitions Understand working principles of basic instruments available for flow, pressure, evel and temperature measurement Describe modern industrial control system architecture HUT4202 Environmental Studies and Process Safety 3 L: 1 T: 0 P 4 Credits Material & Energy Balance Calculations, Chemical Reaction Engineering, Chemical Engineering Operations, Momentum and Mass Transfer, Biochemical Engg., Chem Engg Thermodynamics I and II				
Course code Course title Scheme and Credits Pre- requisites Objectives	CO 3 CO 4 CO	Understand the importance of process dynamics (unsteady state operation) Design a control strategy for key unit operations (reactor, distillation column, etc.) Tune a controller to reject disturbances or manage operating point transitions Understand working principles of basic instruments available for flow, pressure, evel and temperature measurement Describe modern industrial control system architecture HUT4202 Environmental Studies and Process Safety 3 L: 1 T: 0 P 4 Credits Material & Energy Balance Calculations, Chemical Reaction Engineering, Chemical Engineering Operations, Momentum and Mass Transfer, Biochemical Engg., Chem Engg Thermodynamics I and II The course 'Environmental Engineering				
Course code Course title Scheme and Credits Pre- requisites Objectives of the	CO 3 CO 4 CO	Understand the importance of process dynamics (unsteady state operation) Design a control strategy for key unit operations (reactor, distillation column, etc.) Tune a controller to reject disturbances or manage operating point transitions Understand working principles of basic instruments available for flow, pressure, evel and temperature measurement Describe modern industrial control system architecture HUT4202 Environmental Studies and Process Safety 3 L: 1 T: 0 P 4 Credits Material & Energy Balance Calculations, Chemical Reaction Engineering, Chemical Engineering Operations, Momentum and Mass Transfer, Biochemical Engg., Chem Engg Thermodynamics I and II The course 'Environmental Engineering and Process Safety' is highly relevant in all				
Course code Course title Scheme and Credits Pre- requisites Objectives	CO 3 CO 4 CO	Understand the importance of process dynamics (unsteady state operation) Design a control strategy for key unit operations (reactor, distillation column, etc.) Tune a controller to reject disturbances or manage operating point transitions Understand working principles of basic instruments available for flow, pressure, evel and temperature measurement Describe modern industrial control system architecture HUT4202 Environmental Studies and Process Safety 3 L: 1 T: 0 P 4 Credits Material & Energy Balance Calculations, Chemical Reaction Engineering, Chemical Engineering Operations, Momentum and Mass Transfer, Biochemical Engg., Chem Engg Thermodynamics I and II The course 'Environmental Engineering and Process Safety' is highly relevant in all fields of activities, and process industry in				
Course code Course title Scheme and Credits Pre- requisites Objectives of the	CO 3 CO 4 CO	Understand the importance of process dynamics (unsteady state operation) Design a control strategy for key unit operations (reactor, distillation column, etc.) Tune a controller to reject disturbances or manage operating point transitions Understand working principles of basic instruments available for flow, pressure, evel and temperature measurement Describe modern industrial control system architecture HUT4202 Environmental Studies and Process Safety 3 L: 1 T: 0 P 4 Credits Material & Energy Balance Calculations, Chemical Reaction Engineering, Chemical Engineering Operations, Momentum and Mass Transfer, Biochemical Engg., Chem Engg Thermodynamics I and II The course 'Environmental Engineering and Process Safety' is highly relevant in all				

	and significance of the course. This		
	course will certainly add value to our		
	chemical engineering graduates.		
	A chemical engineer working in any		
	function of process industry should have		
	working knowledge of all the prevailing		
	safety,environment, and health standards,		
	and may be involved in / responsible for		
	any or all of the following:		
	- site process safety, environmental affairs		
	, V		
	- assisting the Health Safety Environment		
	(HSE) team		
	- employee safety observations and pre-		
	job risk assessments		
	- implementation of HSE policies and		
	guidelines to help ensure that all		
	employees, contractors, and visitors enjoy		
	high levels of safety, health and environmental protection; this reduces		
	company's liability exposure.		
	- improvement of process safety		
	performance and reduction of risk by		
	facilitating Process Hazard Analyses		
	and Layer of Protection Analyses		
	- incident investigations for process safety		
	and environmental incidents		
	- recognising information that would be		
	pertinent to process safety documentation		
	and follow through with site personnel to		
	ensure information is well documented		
	- developing and updating site Policies and		
	Procedures related to process safety and		
	environmental.		
	- capital and other project teams to		
	identify and resolve regulatory issues,		
	analyse process and property hazards,		
	and establish protective measures to		
	mitigate risks to a tolerable level.		
	- assisting the plant with government		
	interfaces and inspections.		
	- training using internal and external		
	resources; provides guidance to site		
	management for implementation of		
	programs or controls to comply with		
	environmental requirements.		
	- managing site environmental programs		
	including but not limited to waste		
	management, spill prevention & response,		
	etc.		
. V	- preparation and submission of reports to		
λ.	appropriate agencies to assure		
20			
.0	compliance with federal, state and local		
77	regulations. Responds to corporate		
0	requests in a timely manner.		
19	- obtaining new or revised environmental		
^	permits that provide operational flexibility		
~~	within the schedule established for new		
0.	projects. Ensure that the operating units		
Del	can meet all provisions and provide tools		
7	to enable compliance.		
	- providing environmental guidance;		
	develop procedures and training, and HSE		

		of community relations.				
Course title		Detailed contents	L	Т	Р	Tot
Environmenta	1	Introduction to all prevailing international	3	1		4
l Engineering		standards of Health, Safety, and				
and Process		Environment (HSE); Environmental laws				
Safety		and regulations; Standards (air quality,				
		noise, water), ISO 14000+				
	2	Environmental impact assessment, Life	3	1		4
		cycle assessment (LCA)				
	3	Pollution prevention in chemical	1	1		2
		manufacturing, effluent valorisation				
	4	Air pollution; Air pollutants: sources	3	1		4
		(specific pollutants), effects, and				
		dispersion modelling, air pollution, air quality, pollutants minimisation and				
		control, fugitive emissions (source and				
		control),				
	5	Noise pollution	3	1		4
	6	Wastewater treatment; Groundwater and	4	2		6
	0	surface water pollution, removal of	4	2		0
		specific water contaminants; Solid waste;				
		Hazardous waste				
	7	Inherent safety; Major disasters (e.g.	1	0		1
	'	Flixborough, UK; Bhopal, India; Seveso,	-	•		_
		Italy; Pasadena, Texas; Texas City, Texas;				
		Jacksonville, Florida; Port Wentworth,				
		Georgia)				
	8	Toxicology; Industrial hygiene	3	1		4
	9	Source models; Toxic release and	3	1		4
	-	dispersion models		_		-
	10	Fires and explosions; Concepts to prevent	1	1		2
		fires and explosions	_	_		_
	11	Chemical reactivity	3	1		4
	12	Reliefs and reliefs sizing; Hazard	3	1		4
		identification; Risk assessment		_		
	13	Safety procedures and designs	1	1		2
	14	Some case histories	2	1		3
						48
		Total	34	14	0	40
Suggested		lotal			0	40
Suggested books		lotal			0	40
	1	E S			0	40
	1	Chemical Process Safety: Fundamentals with Applications – Daniel A. CROWL and			0	40
	1	Chemical Process Safety: Fundamentals with Applications – Daniel A. CROWL and Joseph F. LOUVAR			0	40
	1 2	Chemical Process Safety: Fundamentals with Applications – Daniel A. CROWL and Joseph F. LOUVAR			0	40
		Chemical Process Safety: Fundamentals with Applications – Daniel A. CROWL and Joseph F. LOUVAR Guidelines for Process Safety Management, Environment, Safety,			0	40
		Chemical Process Safety: Fundamentals with Applications – Daniel A. CROWL and Joseph F. LOUVAR Guidelines for Process Safety Nanagement, Environment, Safety, I lealth, and Quality – Center for the			0	40
		Chemical Process Safety: Fundamentals with Applications – Daniel A. CROWL and Joseph F. LOUVAR Guidelines for Process Safety Nanagement, Environment, Safety, ilealth, and Quality – Center for the Chemical Process Safety of the American			0	40
	2	Chemical Process Safety: Fundamentals with Applications – Daniel A. CROWL and Joseph F. LOUVAR Guidelines for Process Safety Nanagement, Environment, Safety, ilealth, and Quality – Center for the Chemical Process Safety of the American Institute of Chemical Engineers (AIChE)			0	40
		Chemical Process Safety: Fundamentals with Applications – Daniel A. CROWL and Joseph F. LOUVAR Guidelines for Process Safety Nanagement, Environment, Safety, ilealth, and Quality – Center for the Chemical Process Safety of the American Institute of Chemical Engineers (AIChE) Environmental Engineers' Handbook –			0	40
	3	Chemical Process Safety: Fundamentals with Applications – Daniel A. CROWL and Joseph F. LOUVAR Guidelines for Process Safety Nanagement, Environment, Safety, ilealth, and Quality – Center for the Chemical Process Safety of the American Institute of Chemical Engineers (AIChE) Environmental Engineers' Handbook – Irene LIU (Editor)			0	40
	2	Chemical Process Safety: Fundamentals with Applications – Daniel A. CROWL and Joseph F. LOUVAR Guidelines for Process Safety Nanagement, Environment, Safety, ilealth, and Quality – Center for the Chemical Process Safety of the American Institute of Chemical Engineers (AIChE) Environmental Engineers' Handbook – Irene LIU (Editor) Chemical Process Safety Learning from			0	40
	3	Chemical Process Safety: Fundamentals with Applications – Daniel A. CROWL and Joseph F. LOUVAR Guidelines for Process Safety Nanagement, Environment, Safety, I.ealth, and Quality – Center for the Chemical Process Safety of the American Institute of Chemical Engineers (AIChE) Environmental Engineers' Handbook – Irene LIU (Editor) Chemical Process Safety Learning from Case Histories – Roy E. SANDERS			0	40
	3	Chemical Process Safety: Fundamentals with Applications – Daniel A. CROWL and Joseph F. LOUVAR Guidelines for Process Safety Management, Environment, Safety, I.ealth, and Quality – Center for the Chemical Process Safety of the American Institute of Chemical Engineers (AIChE) Environmental Engineers' Handbook – Irene LIU (Editor) Chemical Process Safety Learning from Case Histories – Roy E. SANDERS Guidelines for Process Safety			0	40
	3	Chemical Process Safety: Fundamentals with Applications – Daniel A. CROWL and Joseph F. LOUVAR Guidelines for Process Safety Management, Environment, Safety, I,lealth, and Quality – Center for the Chemical Process Safety of the American Institute of Chemical Engineers (AIChE) Environmental Engineers' Handbook – Irene LIU (Editor) Chemical Process Safety Learning from Case Histories – Roy E. SANDERS Guidelines for Process Safety Documentation – Center for the Chemical			0	40
	3	Chemical Process Safety: Fundamentals with Applications – Daniel A. CROWL and Joseph F. LOUVAR Guidelines for Process Safety Management, Environment, Safety, I.lealth, and Quality – Center for the Chemical Process Safety of the American Institute of Chemical Engineers (AIChE) Environmental Engineers' Handbook – Irene LIU (Editor) Chemical Process Safety Learning from Case Histories – Roy E. SANDERS Guidelines for Process Safety Documentation – Center for the Chemical Process Safety of the American Institute of			0	40
	3	Chemical Process Safety: Fundamentals with Applications – Daniel A. CROWL and Joseph F. LOUVAR Guidelines for Process Safety Management, Environment, Safety, I.lealth, and Quality – Center for the Chemical Process Safety of the American Institute of Chemical Engineers (AIChE) Environmental Engineers' Handbook – Irene LIU (Editor) Chemical Process Safety Learning from Case Histories – Roy E. SANDERS Guidelines for Process Safety Documentation – Center for the Chemical Process Safety of the American Institute of Chemical Engineers (AIChE)			0	40
	3	Chemical Process Safety: Fundamentals with Applications – Daniel A. CROWL and Joseph F. LOUVAR Guidelines for Process Safety Management, Environment, Safety, ilealth, and Quality – Center for the Chemical Process Safety of the American Institute of Chemical Engineers (AIChE) Environmental Engineers' Handbook – Irene LIU (Editor) Chemical Process Safety Learning from Case Histories – Roy E. SANDERS Guidelines for Process Safety Documentation – Center for the Chemical Process Safety of the American Institute of Chemical Engineers (AIChE) Environmental and Health and Safety			0	40
	3	Chemical Process Safety: Fundamentals with Applications – Daniel A. CROWL and Joseph F. LOUVAR Guidelines for Process Safety Management, Environment, Safety, ilealth, and Quality – Center for the Chemical Process Safety of the American Institute of Chemical Engineers (AIChE) Environmental Engineers' Handbook – Irene LIU (Editor) Chemical Process Safety Learning from Case Histories – Roy E. SANDERS Guidelines for Process Safety Documentation – Center for the Chemical Process Safety of the American Institute of Chemical Engineers (AIChE) Environmental and Health and Safety Management: A Guide to Compliance –			0	40
	3	Chemical Process Safety: Fundamentals with Applications – Daniel A. CROWL and Joseph F. LOUVAR Guidelines for Process Safety Management, Environment, Safety, Health, and Quality – Center for the Chemical Process Safety of the American Institute of Chemical Engineers (AIChE) Environmental Engineers' Handbook – Irene LIU (Editor) Chemical Process Safety Learning from Case Histories – Roy E. SANDERS Guidelines for Process Safety Documentation – Center for the Chemical Process Safety of the American Institute of Chemical Engineers (AIChE) Environmental and Health and Safety Management: A Guide to Compliance – Nicholas P. CHEREMISINOFF, Madelyn L.			0	40
	3 4 5	Chemical Process Safety: Fundamentals with Applications – Daniel A. CROWL and Joseph F. LOUVAR Guidelines for Process Safety Management, Environment, Safety, ilealth, and Quality – Center for the Chemical Process Safety of the American Institute of Chemical Engineers (AIChE) Environmental Engineers' Handbook – Irene LIU (Editor) Chemical Process Safety Learning from Case Histories – Roy E. SANDERS Guidelines for Process Safety Documentation – Center for the Chemical Process Safety of the American Institute of Chemical Engineers (AIChE) Environmental and Health and Safety Management: A Guide to Compliance – Nicholas P. CHEREMISINOFF, Madelyn L. GRAFFA			0	40
	3	Chemical Process Safety: Fundamentals with Applications – Daniel A. CROWL and Joseph F. LOUVAR Guidelines for Process Safety Management, Environment, Safety, Health, and Quality – Center for the Chemical Process Safety of the American Institute of Chemical Engineers (AIChE) Environmental Engineers' Handbook – Irene LIU (Editor) Chemical Process Safety Learning from Case Histories – Roy E. SANDERS Guidelines for Process Safety Documentation – Center for the Chemical Process Safety of the American Institute of Chemical Engineers (AIChE) Environmental and Health and Safety Management: A Guide to Compliance – Nicholas P. CHEREMISINOFF, Madelyn L. GRAFFA Environmental Pollution Control			0	40
	3 4 5	Chemical Process Safety: Fundamentals with Applications – Daniel A. CROWL and Joseph F. LOUVAR Guidelines for Process Safety Management, Environment, Safety, ilealth, and Quality – Center for the Chemical Process Safety of the American Institute of Chemical Engineers (AIChE) Environmental Engineers' Handbook – Irene LIU (Editor) Chemical Process Safety Learning from Case Histories – Roy E. SANDERS Guidelines for Process Safety Documentation – Center for the Chemical Process Safety of the American Institute of Chemical Engineers (AIChE) Environmental and Health and Safety Management: A Guide to Compliance – Nicholas P. CHEREMISINOFF, Madelyn L. GRAFFA Environmental Pollution Control Engineering – C. S. Rao			0	40
	3 4 5	Chemical Process Safety: Fundamentals with Applications – Daniel A. CROWL and Joseph F. LOUVAR Guidelines for Process Safety Management, Environment, Safety, Health, and Quality – Center for the Chemical Process Safety of the American Institute of Chemical Engineers (AIChE) Environmental Engineers' Handbook – Irene LIU (Editor) Chemical Process Safety Learning from Case Histories – Roy E. SANDERS Guidelines for Process Safety Documentation – Center for the Chemical Process Safety of the American Institute of Chemical Engineers (AIChE) Environmental and Health and Safety Management: A Guide to Compliance – Nicholas P. CHEREMISINOFF, Madelyn L. GRAFFA Environmental Pollution Control			0	40

		Students will be able to				
	СО	calculate BOD / COD for a given				
	1	composition of effluent stream, Estimation				
		of bio Kinetics				
	СО	calculate adiabatic lapse rate and				
	2	determine conditions for suitability of				
		atmospheric dispersion, effective stack height, chimney design				
	СО	calculate concentrative of pollutant at any				
	3	point in the neighbourhood of emission				
		given atmospheric conditions like wind,				
		dispersion, environmental factors etc.				
	CO	calculate size/time/power required for				
	4	primary clarifier, secondary treatment,				
		tertiary treatment, sizing of different				
	СО	types of Biological treatments etc. identify hazards in a given process and				
	5	assess the same and provide solutions for				
	•	operating safely.				
	СО	specify safety requirements for storage				
	6	and handling of a given chemical.				
Course code		CET4408				
Course title		Industrial and Engineering Chemistry				
Scheme and		3 L: 1 T: 0 P 4 Credits				
Credits		Mills Chand I City in 1 2				
Pre-		XIIth Standard Chemistry and Physics,				
requisites		Organic Chemistry I & II, Material & Energy Balance Calculations, Physical				
		Chemistry				
Objectives	1	Chemistry				
of the	_	G				
course						
Course title		Detailed contents	L	Т	Р	Tot
Chemical	1	Overview of Indian chemical industry, raw	2	1		3
Process		material and energy sources, role of				
Control		catalysis, inorganic products, organic intermediates and final products				
	2	Petroleum refining and cracking	4	2		6
		operations	_			ľ
	3	Industrial processes for ammonia, syngas	4	2		6
		and hydrogen, methanol, chemicals from				
		oxo synthesis				
	4	Organic chemicals based on methanol and	4	2		6
		ethanol (e.g., formaldehyde,				
	5	acetaldehyde, acetic acid) Petrochemicals: e.g., ethylene oxide, α-	4	2		6
	3	olefins, vinyl acetate, phenol, aniline, LAB,	4			0
		phthalic anhydride, PTA				
	6	Polymers (e.g., polyethylene /	2	1		3
		polypropylene)				
	7	Manufacturing of inorganic acids (sulfuric	2	1		3
		and nitric acid)				
	8	Chlor-alkali industry (chlorine, caustic	1	1		2
	9,0	soda, soda ash)	1	1		2
	10	Fertilizers (urea and phosphates) Industrial processes using bio-catalysts	1	1		2
	10	Production of industrial gases	1	1		2
	12	Coal: Classification, sampling, analysis,	3	1		4
	76.00					
	DY	and selection; gasification,				
	13	Combustion	2	1		3
	Del		2	1 17	0	3 48
_	Del	Combustion Total			0	
Suggested books	Del	Combustion			0	

/reference			Ulmann's Encyclopedia of Industrial				
books			Chemistry Industrial Organic Chemistry, Weissermel				
			& Arpe				
			Chemical Process Industries, Shreve B. Austin				
			Fuels Handbook, Johnson Chemical Process Technology, Moulijn, M.				
			and van Dippen				
Course code			Outcomes				
& title			Students will be able to				
a title	СО		Draw process flow diagrams/process				
	1		block diagrams for the manufacture of				
	_		various chemicals from process				
			description				
	СО		List out various alternatives for carrying				
	2		out a particular process and provide				
			recommendations for the best choice				
	СО		List coal utilization technologies and				
	3		advantages of clean coal technology				
	СО		List Principles of combustion systems for				
	4		solid, liquid and gaseous fuel				
Course code			CEP4402				
Course title			Chemical Engineering Laboratory-III				
Scheme and			0 L: 0 T: 8 P 4 Credits				
Credits			.()				
Pre-			Chemical reaction Engineering, Separation				
requisites			Process, Chemical Process Control				
Objectives	1		Chemical Engineering lab provides				
of the			students the first hand experience of				
course			verifying various theoretical concepts				
			learnt in theory courses				
	2		It also exposes them to practical versions				
			of typical chemical engineering				
			equipments and servers as a bridge				
	3		between theory and practice This particular lab focuses on Chemical				
	.		reaction Engineering, Separation Process,				
			Chemical Process Control				
			Chemical Frocess Control				
Detailed			. 0)	L	Т	Р	Tot
contents			X	_	-	_	
	1		Mass Transfer Experiments (2-3				
			experiments)				
	2		Chemical Reaction Engineering (6-8				
			experiments)				
	3	1	Transport Phenomena (3-5 experiments)				
	4	. ^	Process Control (3-4 experiments)				
	5	V	Residence time distribution in CSTR				
		λ					
		20	Total	0	0	96	96
Outcomes		W.					
		r)	Students will be able to				
	co ()	Learn how to experimentally verify various				
	(theoretical principles				
	CO.		Visualize practical implementation of				
	CO		chemical engineering equipments				
	CO CO		Develop experimental skills				
	CO		Able to clearly communicate the recults of				
	4		Able to clearly communicate the results of experimental work in oral and written				
	*		formats.				
Course sada	<u> </u>	<u> </u>			-		T-+
Course code			CEP4412	L	T	P	Tot

					Τ	al
Course title		Process Simulation Lab-2				<u>.</u>
Scheme and Credits		0 L: 0 T: 4 P 2 Credits				
Pre- requisites		Transport phenomena, Chemical reaction Engineering, Separation process, Process Simulation Lab-1				
Objectives of the course	1	To learn write programs on Chemical Engineering processes and equipments				
	2	To learn the design aspects equipment through programming				
	3	To learn the solving process of Chemical Engineering problems through computational techniques				
Detailed		(1)	L	Т	P	Tot
contents		4.	_	•		101
	1	Unsteady state heat and mass transfer				
	2	Fluid flow inside a pipe, heat transfer profile of flowing fluid				
	3	Terminal velocity, pump and friction factor				
	4	Computation of agitated vessel				
	5	Computation of heat exchanger				
	6	Computation of single-effect evaporator				
	7	Computation of dryer				
	8- 12	Process simulation with Aspen Plus/other Process Simulation Software				
	12	Total	0	0	48	48
Outcomes		local	-	-	70	70
Jaconics		Students will be able to				
	СО	Able to write algorithms of chemical				
	1	engineering problems				
	CO 2	Able to design chemical engineering problems and equipments				
	CO 3	Able to perform qualitative and quantitative analysis of chemical engineering problems computationally				
	CO 4	Able to clearly communicate the results of mode ling work in oral and written formats.				

Stu	dy 7 (T1	.2)								
			No.	Subjects	Credits	Hrs	/wee	≥k		
						L	Τ	Р	E. S.	Total
47	CE	CE	CET44 09	Project Management and Economics in Chemical Industry	3	2	1	0	50	100
48	CE	CET	CET44 06	Process Development and Engineering	3	2	1	0	50	100
49	CE	CEP32 01	CEP42 01	Mathematical Methods in Chemical Engineering/Optimization Chem. Eng. Proc.	V 4	2	0	2	50	100
50	ES	ESP	ESP450 1	Equipment Design and Drawing	4	2	0	4	50	100
51	S	ST	xxT4xx x	Special Elective - V	3	2	1	0	50	100
52	CE	CEP	CEP44 71	Seminar	3	0	0	6	50	100
				TOTAL	20	1 0	3	1 2	30 0	600

Course code		HUT4401				
Course title		Project Management and Economics in Chemical Industry				
Scheme and Credits		2 L: 1 T: 0 P 3 Credits				
Pre- requisites		Material and Energy Balance Calculations, Equip Des and Dwg I, Energy Engineering, Ind Eng Chem.				
Objectives of the course	1	This course is required for the future professional career				
Course title		Detailed contents	L	Т	Р	Tot
Project Management and Finance in Chemical Industry	1	Introduction to greenfield projects and global nature of projects; Impact of currency fluctuations on Project justification and cash flows andConcepts of "Quality by Design" including typical design deliverables andunderstanding constructability, operability and maintainability during all stages of project execution. Meaning of Project Engineering, various stages of project implementation				4
	2	Relationship between price of a product and project cost and cost of production, EVA analysis. Elements of cost of production, monitoring of the same in a plant, Meaning of Administrative expenses, sales expenses etc. Introduction to various components of project cost and their estimation. Introduction to concept of Inflation, location index and their use in estimating plant and machinery cost. Various cost indices, Relationship between cost and capacity.				6
	N. C.	Project financing: debt: Equity ratio, Promoters' contribution, Shareholders' contribution, source of finance, time value of money. Concept of interest, time value of money, selection of various alternative equipment or system based on this concept. Indian norms, EMI calculations. Depreciation concept, Indian norms and				4

			their utility in estimate of working results			
			of project. Working capital concept and its			
			relevance to project.			
	4		Estimate of working results of proposed			5
			project. Capacity utilization, Gross profit,			
			operating profit, profit before tax,			
			Corporate tax, dividend, Net cash accruals.			
			Project evaluation: Cumulative cash flow			
			analysis Break-Even analysis, incremental			
			analysis, various ratios analysis,			
			Discounted cash flow analysis			
	5		Process Selection, Site Selection,			5
			Feasibility Report			
	6		Project: Conception to Commissioning:			4
			milestones, Project execution as			
			conglomeration of technical and non			
			technical activities, contractual details.			
			Contract: Meaning, contents, Types of			
			contract. Lumpsum Turnkey (LSTK), Eng,			
			Procurement and Construction (EPC), Eng,			
			Procurement and Construction			
			Management (EPCM). Mergers and			
			Acquisitions			
	7		Reading of Balance Sheets and evaluation			6
			of Techno-commercial Project Reports.			
	8		PERT, CPM, bar charts and network			2
			diagrams			
			<u></u>			
			Total			36
Suggested			1/1			
books			G)			
Suggested	1		Chemical Project Economics, Mahajani V. V.			
books	_		and Mokashi S M.			
/reference			una mokasiii o m			
books			40			
DOOKS	2		Plant Design and Economics for Chemical			
	_		Engineers, Peters M.S., Timmerhaus K.D.			
	3		Process Plant and Equipment Cost			
			Estimation, Kharbanda O.P.			
Outcomes		1	Estimo ion, Knarbanda O.i.			
Outcomes			Outcomes			
			Students will be able to			
	CO		Calculate working capital requirement for			
	1		a given project			
	co		Calculate cost of equipment used in a			
	2		plant total project cost			
	co	4	Calculate cash flow from a given project			
	3	-	Colock a sike for the anniest form when			
	СО	V	Select a site for the project from given			
	4	1	alternatives			
	CO	0	List out various milestones related to			
			project concept to commissioning			
	5	0,		'		
Course code		(°	CET4407			
Course title		0	Multiphase Reaction Engineering			
Course title Scheme and		5	-			
Course title Scheme and Credits			Multiphase Reaction Engineering 2 L: 1 T: 0 P 3 Credits			
Course title Scheme and Credits Pre-			Multiphase Reaction Engineering 2 L: 1 T: 0 P 3 Credits Chemical Reaction Engineering ,			
Course title Scheme and Credits			Multiphase Reaction Engineering 2 L: 1 T: 0 P 3 Credits Chemical Reaction Engineering , Momentum and Mass Transfer (CET 1101:			
Course title Scheme and Credits Pre-			Multiphase Reaction Engineering 2 L: 1 T: 0 P 3 Credits Chemical Reaction Engineering , Momentum and Mass Transfer (CET 1101: Semester III), Heat Transfer, Chemical			
Course title Scheme and Credits Pre-			Multiphase Reaction Engineering 2 L: 1 T: 0 P 3 Credits Chemical Reaction Engineering , Momentum and Mass Transfer (CET 1101: Semester III), Heat Transfer, Chemical Reaction Engineering, Chemical			
Course title Scheme and Credits Pre-			Multiphase Reaction Engineering 2 L: 1 T: 0 P 3 Credits Chemical Reaction Engineering , Momentum and Mass Transfer (CET 1101: Semester III), Heat Transfer, Chemical Reaction Engineering, Chemical Engineering Operations Separation			
Course title Scheme and Credits Pre-			Multiphase Reaction Engineering 2 L: 1 T: 0 P 3 Credits Chemical Reaction Engineering , Momentum and Mass Transfer (CET 1101: Semester III), Heat Transfer, Chemical Reaction Engineering, Chemical			
Course title Scheme and Credits Pre-			Multiphase Reaction Engineering 2 L: 1 T: 0 P 3 Credits Chemical Reaction Engineering , Momentum and Mass Transfer (CET 1101: Semester III), Heat Transfer, Chemical Reaction Engineering, Chemical Engineering Operations Separation			
Course title Scheme and Credits Pre-			Multiphase Reaction Engineering 2 L: 1 T: 0 P 3 Credits Chemical Reaction Engineering , Momentum and Mass Transfer (CET 1101: Semester III), Heat Transfer, Chemical Reaction Engineering, Chemical Engineering Operations Separation Processes, Chem Engg Thermodynamics I			

Objectives	1	1 1	Multiphase Reaction Engineering is				
Objectives of the			concerned with the utilisation of chemical				
course			reactions on a commercial scale. This				
			course is very relevant but not limited to				
			the following industries: Inorganic				
			chemicals, organic chemicals, petroleum				
			& petrochemicals, Pulp & paper, Pigments				
			& paints, rubber, plastics, synthetic fibres,				
			Foods, Dyes and intermediates, Oils,				
			oleochemicals, and surfactants, Mine als,				
			cleansing agents, Polymers and textiles,				
			Biochemicals and biotechnology, pharmaceuticals and drugs,				
			Microelectronics, energy from				
			conventional and non-conventional				
			resources, Metals				
Course title			Detailed contents	L	Т	Р	Tot
Multiphase	1		Classification of multiphase reactors,				2
Reaction			qualitative description, examples of				
Engineering			industrial importance				
	2		Hydrodynamics, scale-up, process design				
			and performance of the following major				
			classes of multiphase reactors, case				
	3	 	studies and problems, w.r.t: - Stirred tank reactors,				6
	4		- Bubble columns, packed bubble				6
	_		columns, sectionalised bubble columns,				•
	5		- Internal loop and external loop air-lift				4
			reactors, jet loop reactors,				
	6		- Fluid-fluid reactors such as spray				6
			columns, packed columns, plate columns,				
			static mixers, rotating disc contactors				
	7		- Fixed bed reactors, trickle bed reactors,				6
	8		- Solid-liquid and gas-solid fluidised bed				6
			reactors, solid-gas transport reactors Total				36
Suggested	1		Heterogeneous Reactions, Vol. I and II – L.				30
books	_		K. Doraiswamy, M. M. Sharma				
/reference	2		Fluid Mixing and Gas Dispersion in Stirred				
books			Reactors - G. B. Tatterson				
	3		Bubble Column Reactors - W. D. Deckwer				
	4		Fluid sation - D. Kunni and O. Levenspiel				
	5		Gas Liquid Reactions - P. V. Danckwerts				
	6		Fluidisation – J. F. Davidson and D.				
	7	\vdash	Harrison Random Backings and Backed Tower				
	'		Pandom Packings and Packed Tower Design - R. F. Strigel				
Outcomes		.1	pesign it. it striger				
		10	Students will be able to				
	СО	' A	calculate operating regime for a given				
	1	λ	reaction.				
	СО	0,	calculate intrinsic kinetics from the data				
	2	V	on model contactors.				
	CO	~	calculate conversion / selectivity / size /				
	3 (/	temperature / pressure / power required for conducting a given multiphase reaction				
	O,		equipment.				
Course code	0		CET4406				
Course title	120		Process Development and				
	A.		Engineering				
Scheme and Credits			2 L: 1 T: 0 P 3 Credits				
Pre-			All chemical Engineering subjects, Material				
requisites			Science and Engineering, Env Engg and				

	1		Proc Safety				
Objectives	1		This course integrates all the chemical				
of the			engineering and allied subjects for				
course			appropriate design of process plants, in				
course			selection of processes and evaluating				
			alternatives				
Course title			Detailed contents	L	Т	Р	Tot
Process	1		Development of a preliminary Process	-	•	•	2
Developmen	_		System: Modular approach				_
t and	2		Multiple process synthesis, selection of				2
Engineering	_		process, basic economic evaluation				_
	3		Sequencing of operations and integration				2
			in processes				_
	4		Process Engineering aspects of low and				4
	-		medium volume chemicals including				-
			process development. Batch vs continuous				
			vs semi-batch processes-Scale up Scale up				
			aspects; identification of controlling steps				
			of process				
	5		Concept of dedicated and multiproduct				3
			plant facilities, pilot plant, mini plants				
	6		Development and evaluation of alternative				3
			flow sheets				
	7		Green Engineering principles				3
	8		Utilisation of energy, cost of utilities, heat				3
			exchange networks				
	9		Process intensification				3
	10		Preparation of Conceptual process and				3
			instrumentation diagrams.				
	11		Preparation of process specifications for				3
			typical equipment.				
	12		Safety and Risk of chemical processes				3
	13		Learn from mistakes				2
			Total				36
Cussiand	1		Industrial Commission Process Design D. I				
Suggested books	1		Industrial Cnemical Process Design, D. L. Erwine				
/reference	2		Laboratory Chemical Process				
books	-		Development, Anderson N.				
DOOKS	3		Organic Unit Processes, Groggins				
	4		Chemical Process Engineering: Design and				
	-		Economics, Silla H.				
	5		Handbook of Chemical Process				
			Development, Chandalia S. B.				
	6		Conceptual Chemical Plant Design,				
	-		Douglas J. M.				
Course code		4	Outcomes				
& title		-	Students will be able to				
	СО	V	to select a strategy for a process from				
	1	1	amongst the alternatives				
	СО	_O	Determine strategy for carrying out a				
	2	0	particular process				
	CO	7_	Prepare specifications for a particular				
	3 (\	equipment				
	CQ 4		Calculate utility requirements				
Course code	N		ESP4501				
Course title	X		Equipment Design and Drawing				
Scheme and	Α,		2 L: 0 T: 4 P 4 Credits				
Credits	,						
Pre-			Equipment Design and Drawing-I,				
requisites			Structural Mechanics, Material Sci and				
			Engg				

		1					
Objectives	1	Chemical Enginee					
of the			Mechanical Design of				
course			Equipments such as				
		Reaction Vessels,					
			nns etc . This will also be				
			esign software which is				
		widely used in che			_		
Course title	-	Detailed conten		L	Т	Р	Tot
Equipment	1		In of Reaction Vessels .	4		8	12
Design and			s subjected to internal				
Drawing		and external pres					
			ts /Coils used for heating				
			ction vessels and their				
		design.	agitators and their				
			tor system components				
		such as shafts,stu					
	2	High Pressure Ves		4		8	12
	-	a) Construction ar		-		3	12
	3		n of Heat Exchangers	4		8	12
			xchangers such as	-			
			and tube type and				
			angers. Design of heads,				
			3 1				
		flanges, nozzles, o	compensation for				
		pressure vessels					
			shell and tube type heat				
		exchangers.	(0)				
			us components of heat				
			as Fixed tube sheet				
		type,U tube, Float					
			or heat exchangers.				
	4		n of distillation columns	3		6	9
			ns such as tray and				
		packed . Types of					
			nents of columns such as				
			owncomers,bubble cap				
		etc					
		c) Design of shell	for various stress				
		conditions .	and their design				
		d) Tray supports a		2			c
	5	and skirt for show	s such as bracket, saddle	2		4	6
	6	Engineering flow	nical process equipment	4		8	12
	7		nentation diagrams.	3		6	9
	8	i pring and mistrul		24	0	48	72
	- 6	Total		24	U	+0	12
Suggested	1	Total					
reference	2	4					
books	3	1 01					
	4	/ 4					
	5	0					
Outcomes	 	Students will be	able to				
3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	СО	Students will be a					
	1 (ous parts such as shell,				
	- 1/		nical process equipment.				
	CO	Students will be a	ble to prepare drawing				
	CO	Students will be a for chemical proce	ble to prepare drawing ess equipment.				

Stu	dy 8 (T1	4)								
				Subjects	Credits	Hrs	/wee	≥k		
						L	Т	Р	E. S.	Total
53	CE	CET	CET45 41	Advanced Transport Phenomena	3	2	1	0	50	100
54	CE	CET	CET45 43	Advanced Mass Transfer	3	2	1	0	50	100
55	CE	CET	CET45 43	Advanced Separation Processes	3	2	1	0	50	100
56	ES	EST	EST450 1	LCA and Sustainability/ NPTEL/ Chemical Safety and Risk Management	3	2	1	0	50	100
57	S	ST	xxT4xx x	Advanced Special Elective - VI	3	2	1	0	50	100
58	HU	HUT	HUT45 01	Research Methodology	4	3	1	0	50	100
59	CE	CEP	CEP45 71	Design / Research Project - I	4	0	0	8	50	100
				TOTAL	23	1 3	6	8	35 0	700

Course code			HUT4501				
Course title			Research Methodology/Design and				
			Analysis of Experiments				
Scheme and			2 L: 1 T: 0 P 3 Credits				
Credits							
Pre-			. *				
requisites			Applied Mathematics I				
Objectives of	1		Modern day manufacturing activities and				
the course			R&D activites need decisions taken with a				
			scientific rigour and should be				
			wellsupported by 'statistics'. Chemical				
			engineering graduates who will serve				
			industry as well as postgraduate research				
			students who will serve industry, R&D				
			organisations, or academic research				
			should have a reasonably good				
			background of statistical decision making.				
			This also involves extraction of				
			meaningful data from well-designed				
			minimal number of experiments at the				
			lowest possible material costs. This				
			course will also help the students in all				
			domains of their life by imparting them a				
		1	vision for critical appraisal and analysis of				
C			data.			_	T. 1
Course title	-	-	Detailed contents	L	Т	Р	Tot
Design and	1	√O,	Overview of statistical analysis of data,				8
Analysis of		\ \ \	statistical sampling, statistical inference,				
Experiments	_	.0	tests of significance, regression analysis.				_
	3	0	Analysis of variance. Statistical design of experiments, Factorial				6 10
	5	7	design, Response Surface Methodology				10
	0	T	(RSM).				
	10		Box-Behnken and Plackett Burman				12
	Δ,		methods, Central Composite Design (CCD)				12
	X		Total				36
	6		iutai				30
Cummostod	71		Design of Experiments in Chemical				
Suggested	у Т		Design of Experiments in Chemical				
books	<u> </u>		Engineering: Živorad R. Lazić				
/reference	2		Design and Analysis of Experiments: D. C.				
books	<u> </u>		Montgomery				
	3		Introduction to Statistical Quality Control:				

	1	1	D C M				
	<u> </u>	-	D. C. Montgomery				
	4		Response Surface Methodology: Process				
			and Product Optimization using Designed				
			Experiments: R. H. Myers, D. C.				
			Montgomery				
			Contraction				
Course code			Outcomes				
& title	-		Students will be able to				
	CO		Realize importance of statistical analysis of data				
	CO		Statistically correlate one set of data with				
	2		another set, and identify whether the				
			correlation is significant or not				
	СО		List out set of experiments needed for a				
	3		particular situation/process considering				
	•		the interation between				
			parameters/numbers of experiments				
			needed				
	СО		Apply the methods of experimental design				
	4		to optimisation, and to identifying those				
			parameters that are of highest importance				
Course code	Ì	İ	CET4541				
Course title		1	Advanced Transport Phenomena				
Scheme and			2 L: 1 T: 0 P 3 Credits				
Credits							
Pre-		<u> </u>					
requisites			V				
Objectives of	1		1				
the course			1				
Course title			Detailed contents	L	Т	Р	Tot
	1		Turbulent flow, basics, Reynolds average				15
			Navier-Stokes equations, closure problem,				
			Boussinesques hypothesis, Prandtl mixing				
			length theory, turbulence models, energy				
			length theory, turbulence models, energy spectrum, Turbulent boundary layer,				
			length theory, turbulence models, energy spectrum, Turbulent boundary layer, universal velocity profile				
	2		length theory, turbulence models, energy spectrum, Turbulent boundary layer, universal velocity profile Gas-liquid and solid-liquid fluidised beds:				12
	2		length theory, turbulence models, energy spectrum, Turbulent boundary layer, universal velocity profile Gas-liquid and solid-liquid fluidised beds: Characteristics of particles, Principle of				12
	2		length theory, turbulence models, energy spectrum, Turbulent boundary layer, universal velocity profile Gas-liquid and solid-liquid fluidised beds: Characteristics of particles, Principle of fluidisation and mapping of various				12
	2		length theory, turbulence models, energy spectrum, Turbulent boundary layer, universal velocity profile Gas-liquid and solid-liquid fluidised beds: Characteristics of particles, Principle of fluidisation and mapping of various regimes, Two phase theory of fluidisation,				12
	2		length theory, turbulence models, energy spectrum, Turbulent boundary layer, universal velocity profile Gas-liquid and solid-liquid fluidised beds: Characteristics of particles, Principle of fluidisation and mapping of various regimes, Two phase theory of fluidisation, Bubbles in fluidised bed, Entrainment and				12
	2		length theory, turbulence models, energy spectrum, Turbulent boundary layer, universal velocity profile Gas-liquid and solid-liquid fluidised beds: Characteristics of particles, Principle of fluidisation and mapping of various regimes, Two phase theory of fluidisation, Bubbles in fluidised bed, Entrainment and Elutriation, Fast fluidised bed, Mixing,				12
	2		length theory, turbulence models, energy spectrum, Turbulent boundary layer, universal velocity profile Gas-liquid and solid-liquid fluidised beds: Characteristics of particles, Principle of fluidisation and mapping of various regimes, Two phase theory of fluidisation, Buboles in fluidised bed, Entrainment and Elutriation, Fast fluidised bed, Mixing, segregation and gas dispersion, Heat and				12
	2		length theory, turbulence models, energy spectrum, Turbulent boundary layer, universal velocity profile Gas-liquid and solid-liquid fluidised beds: Characteristics of particles, Principle of fluidisation and mapping of various regimes, Two phase theory of fluidisation, Buboles in fluidised bed, Entrainment and Elutriation, Fast fluidised bed, Mixing, segregation and gas dispersion, Heat and mass transfer in fluidised bed, Solid-liquid				12
	2		length theory, turbulence models, energy spectrum, Turbulent boundary layer, universal velocity profile Gas-liquid and solid-liquid fluidised beds: Characteristics of particles, Principle of fluidisation and mapping of various regimes, Two phase theory of fluidisation, Bubbles in fluidised bed, Entrainment and Elutration, Fast fluidised bed, Mixing, segregation and gas dispersion, Heat and mass transfer in fluidised bed, Solid-liquid fluidised bed and three phase fluidised				12
			length theory, turbulence models, energy spectrum, Turbulent boundary layer, universal velocity profile Gas-liquid and solid-liquid fluidised beds: Characteristics of particles, Principle of fluidisation and mapping of various regimes, Two phase theory of fluidisation, Bubyles in fluidised bed, Entrainment and Elutriation, Fast fluidised bed, Mixing, segregation and gas dispersion, Heat and mass transfer in fluidised bed, Solid-liquid fluidised bed and three phase fluidised bed, Design of fluidised bed reactors.				
	2		length theory, turbulence models, energy spectrum, Turbulent boundary layer, universal velocity profile Gas-liquid and solid-liquid fluidised beds: Characteristics of particles, Principle of fluidisation and mapping of various regimes, Two phase theory of fluidisation, Bubyles in fluidised bed, Entrainment and Elutriation, Fast fluidised bed, Mixing, segregation and gas dispersion, Heat and mass transfer in fluidised bed, Solid-liquid fluidised bed and three phase fluidised bed, Design of fluidised bed reactors. Introduction to Computational Fluid				9
			length theory, turbulence models, energy spectrum, Turbulent boundary layer, universal velocity profile Gas-liquid and solid-liquid fluidised beds: Characteristics of particles, Principle of fluidisation and mapping of various regimes, Two phase theory of fluidisation, Bubbles in fluidised bed, Entrainment and Elutriation, Fast fluidised bed, Mixing, segregation and gas dispersion, Heat and mass transfer in fluidised bed, Solid-liquid fluidised bed and three phase fluidised bed, Design of fluidised bed reactors. Introduction to Computational Fluid Dynamics				9
Suggested		4	length theory, turbulence models, energy spectrum, Turbulent boundary layer, universal velocity profile Gas-liquid and solid-liquid fluidised beds: Characteristics of particles, Principle of fluidisation and mapping of various regimes, Two phase theory of fluidisation, Bubyles in fluidised bed, Entrainment and Elutriation, Fast fluidised bed, Mixing, segregation and gas dispersion, Heat and mass transfer in fluidised bed, Solid-liquid fluidised bed and three phase fluidised bed, Design of fluidised bed reactors. Introduction to Computational Fluid				
Suggested		200	length theory, turbulence models, energy spectrum, Turbulent boundary layer, universal velocity profile Gas-liquid and solid-liquid fluidised beds: Characteristics of particles, Principle of fluidisation and mapping of various regimes, Two phase theory of fluidisation, Bubbles in fluidised bed, Entrainment and Elutriation, Fast fluidised bed, Mixing, segregation and gas dispersion, Heat and mass transfer in fluidised bed, Solid-liquid fluidised bed and three phase fluidised bed, Design of fluidised bed reactors. Introduction to Computational Fluid Dynamics				9
books	3	8	length theory, turbulence models, energy spectrum, Turbulent boundary layer, universal velocity profile Gas-liquid and solid-liquid fluidised beds: Characteristics of particles, Principle of fluidisation and mapping of various regimes, Two phase theory of fluidisation, Bubbles in fluidised bed, Entrainment and Elutriation, Fast fluidised bed, Mixing, segregation and gas dispersion, Heat and mass transfer in fluidised bed, Solid-liquid fluidised bed and three phase fluidised bed, Design of fluidised bed reactors. Introduction to Computational Fluid Dynamics Total				9
		8	length theory, turbulence models, energy spectrum, Turbulent boundary layer, universal velocity profile Gas-liquid and solid-liquid fluidised beds: Characteristics of particles, Principle of fluidisation and mapping of various regimes, Two phase theory of fluidisation, Bubbles in fluidised bed, Entrainment and Elutriation, Fast fluidised bed, Mixing, segregation and gas dispersion, Heat and mass transfer in fluidised bed, Solid-liquid fluidised bed and three phase fluidised bed, Design of fluidised bed reactors. Introduction to Computational Fluid Dynamics Total Transport Phenomena, R.B. Bird, W.E.				9
books Suggested	3	200	length theory, turbulence models, energy spectrum, Turbulent boundary layer, universal velocity profile Gas-liquid and solid-liquid fluidised beds: Characteristics of particles, Principle of fluidisation and mapping of various regimes, Two phase theory of fluidisation, Bubbles in fluidised bed, Entrainment and Elutriation, Fast fluidised bed, Mixing, segregation and gas dispersion, Heat and mass transfer in fluidised bed, Solid-liquid fluidised bed and three phase fluidised bed, Design of fluidised bed reactors. Introduction to Computational Fluid Dynamics Total				9
books Suggested books	3	8	length theory, turbulence models, energy spectrum, Turbulent boundary layer, universal velocity profile Gas-liquid and solid-liquid fluidised beds: Characteristics of particles, Principle of fluidisation and mapping of various regimes, Two phase theory of fluidisation, Bubbles in fluidised bed, Entrainment and Elutriation, Fast fluidised bed, Mixing, segregation and gas dispersion, Heat and mass transfer in fluidised bed, Solid-liquid fluidised bed and three phase fluidised bed, Design of fluidised bed reactors. Introduction to Computational Fluid Dynamics Total Transport Phenomena, R.B. Bird, W.E.				9
Suggested books /reference	3	8	length theory, turbulence models, energy spectrum, Turbulent boundary layer, universal velocity profile Gas-liquid and solid-liquid fluidised beds: Characteristics of particles, Principle of fluidisation and mapping of various regimes, Two phase theory of fluidisation, Bubbles in fluidised bed, Entrainment and Elutriation, Fast fluidised bed, Mixing, segregation and gas dispersion, Heat and mass transfer in fluidised bed, Solid-liquid fluidised bed and three phase fluidised bed, Design of fluidised bed reactors. Introduction to Computational Fluid Dynamics Total Transport Phenomena, R.B. Bird, W.E.				9
Suggested books /reference	3	8	length theory, turbulence models, energy spectrum, Turbulent boundary layer, universal velocity profile Gas-liquid and solid-liquid fluidised beds: Characteristics of particles, Principle of fluidisation and mapping of various regimes, Two phase theory of fluidisation, Bubbles in fluidised bed, Entrainment and Elutriation, Fast fluidised bed, Mixing, segregation and gas dispersion, Heat and mass transfer in fluidised bed, Solid-liquid fluidised bed and three phase fluidised bed, Design of fluidised bed reactors. Introduction to Computational Fluid Dynamics Total Transport Phenomena, R.B. Bird, W.E. Stewart, E.N. Lightfoot				9
Suggested books /reference	3	8	length theory, turbulence models, energy spectrum, Turbulent boundary layer, universal velocity profile Gas-liquid and solid-liquid fluidised beds: Characteristics of particles, Principle of fluidisation and mapping of various regimes, Two phase theory of fluidisation, Bubbles in fluidised bed, Entrainment and Elutriation, Fast fluidised bed, Mixing, segregation and gas dispersion, Heat and mass transfer in fluidised bed, Solid-liquid fluidised bed and three phase fluidised bed, Design of fluidised bed reactors. Introduction to Computational Fluid Dynamics Total Transport Phenomena, R.B. Bird, W.E. Stewart, E.N. Lightfoot Transport Phenomena, R.S. Brodkey Momentum, Heat and Mass Transfer, Bennet and Myers				9
Suggested books /reference	3	8	length theory, turbulence models, energy spectrum, Turbulent boundary layer, universal velocity profile Gas-liquid and solid-liquid fluidised beds: Characteristics of particles, Principle of fluidisation and mapping of various regimes, Two phase theory of fluidisation, Bubbles in fluidised bed, Entrainment and Elutriation, Fast fluidised bed, Mixing, segregation and gas dispersion, Heat and mass transfer in fluidised bed, Solid-liquid fluidised bed and three phase fluidised bed, Design of fluidised bed reactors. Introduction to Computational Fluid Dynamics Total Transport Phenomena, R.B. Bird, W.E. Stewart, E.N. Lightfoot Transport Phenomena, R.S. Brodkey Momentum, Heat and Mass Transfer, Bennet and Myers				9
Suggested books /reference	1 2 3 4 5	0	length theory, turbulence models, energy spectrum, Turbulent boundary layer, universal velocity profile Gas-liquid and solid-liquid fluidised beds: Characteristics of particles, Principle of fluidisation and mapping of various regimes, Two phase theory of fluidisation, Buboles in fluidised bed, Entrainment and Elutriation, Fast fluidised bed, Mixing, segregation and gas dispersion, Heat and mass transfer in fluidised bed, Solid-liquid fluidised bed and three phase fluidised bed, Design of fluidised bed reactors. Introduction to Computational Fluid Dynamics Total Transport Phenomena, R.B. Bird, W.E. Stewart, E.N. Lightfoot Transport Phenomena, R.S. Brodkey Momentum, Heat and Mass Transfer, Bennet and Myers Fluid Mechanics, Pijush K. Kundu Fluid Mechanics, K. Subramanya				9
Suggested books /reference	1 2 3	000	length theory, turbulence models, energy spectrum, Turbulent boundary layer, universal velocity profile Gas-liquid and solid-liquid fluidised beds: Characteristics of particles, Principle of fluidisation and mapping of various regimes, Two phase theory of fluidisation, Buboles in fluidised bed, Entrainment and Elutriation, Fast fluidised bed, Mixing, segregation and gas dispersion, Heat and mass transfer in fluidised bed, Solid-liquid fluidised bed and three phase fluidised bed, Design of fluidised bed reactors. Introduction to Computational Fluid Dynamics Total Transport Phenomena, R.B. Bird, W.E. Stewart, E.N. Lightfoot Transport Phenomena, R.S. Brodkey Momentum, Heat and Mass Transfer, Bennet and Myers Fluid Mechanics, Pijush K. Kundu				9
Suggested books /reference	1 2 3 4 5	80	length theory, turbulence models, energy spectrum, Turbulent boundary layer, universal velocity profile Gas-liquid and solid-liquid fluidised beds: Characteristics of particles, Principle of fluidisation and mapping of various regimes, Two phase theory of fluidisation, Buboles in fluidised bed, Entrainment and Elutriation, Fast fluidised bed, Mixing, segregation and gas dispersion, Heat and mass transfer in fluidised bed, Solid-liquid fluidised bed and three phase fluidised bed, Design of fluidised bed reactors. Introduction to Computational Fluid Dynamics Total Transport Phenomena, R.B. Bird, W.E. Stewart, E.N. Lightfoot Transport Phenomena, R.S. Brodkey Momentum, Heat and Mass Transfer, Bennet and Myers Fluid Mechanics, Pijush K. Kundu Fluid Mechanics, K. Subramanya				9
Suggested books /reference	3 1 2 3 4 5 6	8	length theory, turbulence models, energy spectrum, Turbulent boundary layer, universal velocity profile Gas-liquid and solid-liquid fluidised beds: Characteristics of particles, Principle of fluidisation and mapping of various regimes, Two phase theory of fluidisation, Buboles in fluidised bed, Entrainment and Elutriation, Fast fluidised bed, Mixing, segregation and gas dispersion, Heat and mass transfer in fluidised bed, Solid-liquid fluidised bed and three phase fluidised bed, Design of fluidised bed reactors. Introduction to Computational Fluid Dynamics Total Transport Phenomena, R.B. Bird, W.E. Stewart, E.N. Lightfoot Transport Phenomena, R.S. Brodkey Momentum, Heat and Mass Transfer, Bennet and Myers Fluid Mechanics, Pijush K. Kundu Fluid Mechanics, K. Subramanya				9
Suggested books /reference books	3 1 2 3 4 5 6	8	length theory, turbulence models, energy spectrum, Turbulent boundary layer, universal velocity profile Gas-liquid and solid-liquid fluidised beds: Characteristics of particles, Principle of fluidisation and mapping of various regimes, Two phase theory of fluidisation, Buboles in fluidised bed, Entrainment and Elutriation, Fast fluidised bed, Mixing, segregation and gas dispersion, Heat and mass transfer in fluidised bed, Solid-liquid fluidised bed and three phase fluidised bed, Design of fluidised bed reactors. Introduction to Computational Fluid Dynamics Total Transport Phenomena, R.B. Bird, W.E. Stewart, E.N. Lightfoot Transport Phenomena, R.S. Brodkey Momentum, Heat and Mass Transfer, Bennet and Myers Fluid Mechanics, Pijush K. Kundu Fluid Mechanics, K. Subramanya				9

	1	1	Students will be able to				
	СО		Calculate pressure drop in pipelines and				
	1		equipment for different situations such as				
	•		single- and two-				
			phase flow, fixed and fluidized beds (K3)				
	СО		Describe and discuss equation of motion				
	2		for turbulent flows (K2)				
	CO		Tor carbaiche nows (K2)				
	3		Λ.				
	СО		A V				
	4		~ V				
Course code			CET4542				
Course title			Advanced Chemical Reaction				
Course title			Engineering				
Scheme and			2 L: 1 T: 0 P 3 Credits				
Credits			m - m				
Pre-			. ′				
requisites			14				
Objectives of	1		100				
the course			V				
Course title			Detailed contents	L	Т	Р	Tot
	1		Theory of mass transfer with				10
			chemical reaction (regimes and				
			examples), model contactors				
	2		Kinetics of solid-catalysed gas phase				10
			reactions: Diffusion with reaction in				
			porous catalyst, Mechanism of catalytic				
			reactions. Development of rate equations				
			for solid catalysed fluid phase reactions;				
			Estimation of kinetic parameters				
			External/internal mass and heat transfer				
	-		resistances in catalyst particles.				10
	3		 Design of fixed bed catalytic reactor - isothermal, adiabatic, non-isothermal 				10
			programmed reactors: • Non-ideal flow in				
			reactors; RTD, Estimation of				
			dispersion/backmixing, dispersed plug				
			flow and tanks in series model, design				
			aspects of reactors with non ideal flow,				
			micro and meso mixing in reactors				
	4		Reactor stability				6
			Total				36
			20				
Suggested	1		Chemical Reaction Engineering, O.				
books			Levenspiel				
/reference	2	1	Chemical Engineering Kinetics, J.M. Smith				
books	3	4	Elements of Chemical Reaction				
		4	Engineering, H. Scott Foggler				
	4	10,	Chemical Reactor Analysis and Design,				
	<u> </u>	> '	G.F. Froment, K.B. Bischoff				
	5	O	Chemical Reaction Analysis, E.E. Petersen				
	6	(U	Heterogeneous Reactions vol. I and II, L.K.				
		1	Doraiswamy, M.M. Sharma				
	70		Gas Liquid Reactions, P.V. Danckwerts				
	8		Mass Transfer with Chemical Reaction, G.				
Course sede	0.		Astarita				
Course code	0,		Outcomes				
& title	vco		Students will be able to				
	γεσ		Describe and discuss principles of various types of reactors (K2)				
	CO		Calculate rates of reactions based on				
	2		given reaction scheme (K3)				
	CO		Design various components of reactors				
	3		used in industrial practice (K5)				
L		1	asea in maastral practice (NS)				

	T ==					1	
	СО		Compare various reactors and select an				
	4		appropriate reactor for a given situation				
			(K5)				
Course code	<u> </u>		2451				
Course title			Advanced Separation Processes				
Scheme and			2 L: 1 T: 0 P 3 Credits				
Credits							
Pre-			Α.				
requisites			~ \				
Objectives of	1		U,*				
the course			C _V				
Course title			Detailed contents	L	Т	Р	Tot
Advanced	1		Membrane Separations: Types of	9	3		12
Separation			separations, reverse osmosis				
Processes			ultrafiltration, gas separation, vapour				
			permeation and pervaporation, dialysis,				
			electrodialysis, nanofiltration				
			Transport Through Porous Membranes,				
			Resistance Models, Liquid Diffusion				
			Through Pores				
			Gas Mixtures: Gas Diffusion Through				
			Porous Membranes, Transport Through				
			Nonporous Membranes, Solution-Diffusion				
			for Liquid and gas mixtures				
			Concentration Polarization and Fouling,				
			Membrane modules, arrangement of				
			modules in cascanes, performance criteria				
			and design considerations				
	2		Methods for multicomponent separations:	6	2		8
	_		Fenske-Underwood-Gilliland Method,	_	_		
			selection of two key components,				
			minimum number of stages, minimum				
			reflux and distribution of non key				
			components, Kremser group method				
	3		Chromatographic Separations: Principles	4	2		6
			of chromatographic separation, criteria for		_		
			effective separation, supports, and				
			methodology and process design.				
	4	 	Separation of Racemic Mixtures: Principles	3	1		4
			of racemic modification and their		_		_
			application in separation of racemic				
			mixtures with specific examples.				
	5	 	Dissociation Extraction, Reactive	4	2		6
			Extraction, Reactive distillation		_		
	<u> </u>	 					
	1	1	×				
	+	_	Total				36
Suggested	1	1	Transport Processes and Separation				30
books	•	1	Process Principles, C.J. Geankoplis				
/reference	2	. 4	Separation Processes, C.J. King				
books	3	λ	Separation Processes, C.J. King Separation Process Principles, Authors:				
מסטע	_ _	20					
	A .	0	J.D. Seader, E.J. Henley Principles of Mass Transfer and Separation				
	4	7					
	-0	F-	Processes, B.K. Dutta				
	50		Mass Transfer Operations, R.E. Treybal				
	6 3		Green Separation Processes, C.A.M.				
	VZ		Afonso, J.F. Crespo				
1	V		Equilibrium Stage Separation Operations				
1	Λ,		in Chemical Engineering, E.J. Henley, J.D.				
	9		Seader Diffusion: Mass Transfer in Fluid				
	1		Systems, E.L. Cussler				
l .	-	+					
	8		Chemical Engineering, Volume 2, J.M.				
	8		Chemical Engineering, Volume 2, J.M. Coulson, J.F. Richardson				

Outcomes					
			Students will be able to		
	СО		Describe and discuss principles of various		
	1		advanced separation processes based on		
			membranes,		
			chromatography, distillation, extractions (K2)		
	CO		Design various components of equipment		
	2		used in advanced separation processes (K5)		
	СО		Compare various options and select an		
	3		appropriate process for a particular		
			separation (K5)		
_		ļ	^'		
Course Code			EST4501		
Course Title			LCA and Sustainability		
Credits			2L + 1T = 3 credits		
Course			(students will be able to)		
Outcomes	1	1	Understand the different types of		
		1	environmental pollution problems, and		
			their sustainable solutions		
		2	Able to work in the area of sustainability		
		-	for research and education		
		3	Have a broader perspective in thinking for		
			sustainable practices by utilising the		
			engineering knowledge and principles		
			gained from this course		
		4	7???????		
		5	Create a model research project		
	İ	1	Understand the different types of		
			environmental pollution problems, and		
			their sustainable solutions		
List of			Introductory knowledge of linear algebra,		
Prerequisite			probability chemistry, and economics is		
Courses			recommended.		
List of			Design / Research Project – II (CEP-4552)		
Courses where this			V,		
course will					
be			.0)		
prerequisite			8		
Course			Today our world is confronted with		
Description			sustainability challenges at an		
		1	unprecedented scale. Human-induced		
			climate change, the depletion of natural		
		7	resources including water, and threats to		
		5	food security threaten to adversely affect		
		V	people's well-being at a time when many		
		.0	individuals also struggle to overcome		
		0)	poverty, inequity, and other affronts to		
	-	7	human rights. The magnitude of these		
	.0	T	challenges and their wide-ranging adverse		
	10		ramifications motivate proactive		
	O,		businesses and entrepreneurs to act,		
	0,		whether by participating in efforts to		
	100		mitigate risk and negative externalities or		
	K		by innovating to create positive change. This course is relevant as it the students		
			will:		
			Will: Have an increased awareness amongst		
			students on issues in areas of		
			Stadents on 133des in dieds of		

			sustainability.		
			Understand the role of engineering and		
			technology within sustainable		
			development.		
			Know the methods, tools, and incentives		
			for sustainable product-service system		
			development.		
			Establish a clear understanding of the role		
			and impact of various aspects of		
			engineering and engineering decisions on		
			environmental, societal, and economic		
			problems.		
Course			7		
Contents			^*		
		1	Sustainability:		
			Need and concept; Challenges		
		2	Environment acts and protocols		
		3	Global, regional, and local		
			environmental issues, Natural		
			resources and their pollution		
		4	Carbon credits; Zero waste concept		
		5	Carbon credits		
		6	Zero waste concept		
		7	ISO 14000		
		8	Life Cycle Analysis (LCA):		
			Environmental impact assessment		
			studies		
		9	Sustainable habitat; Green buildings		
		10	Green materials; Conventional and		
			renewable sources of materials		
		11	Conventional and renewable sources		
			of energy		
		12	Technology and sustainable		
		12	development		
		13	Sustainable urbanisation		
		14	Ecology		
		17	Leology		
			δ.		
		1	Allen D. T., Shonnard, D. R.; Sustainability		
		1	Engineering: Concepts, Design, and Case		
			Studies; Prentice-Hall.		
		2	Bradley, A. S., Adebayo, A. O., Maria, P.;		
		2			
		4	Engineering Applications in Sustainable		
		'	Design and Development; Cengage		
	_	3.4	Learning		
		3	Environmental Impact Assessment		
		. V	Guidelines; Notification of Government of		
		X.	India, 2006		
		A CHI	Mackenthun, K. M.; Basic Concepts in		
		0	Environmental Management, Lewis		
	-	1	Publication, London, 1998		
	٥,	5	ECBC Code 2007, Bureau of Energy		
	~		Efficiency, New Delhi Bureau of Energy		
	0		Efficiency Publications-Rating System,		
	2		TERI Publications - GRIHA Rating System.		
	100	6	Ni Bin Chang; System Analysis for		
	Y.		Sustainable Engineering: Theory and		
			Applications; McGraw-Hill Professional.		
		7	Twidell, J. W., Weir, A. D.; Renewable		
			Energy Resources, English Language Book		
			Society (ELBS).		
•	•		. •		

8	Purohit, S. S.; Green Technology – An Approach for Sustainable Environment; Agrobios Publication		
	Agrobios Publication		

CET-4544: Chemical Safety and Risk Management (3 = 2+1+0); CT = 25; End-sem = 25; Total = 50)

Course Titles Chemical Safety and Bick

4544	Management	Cre	=	=	
Term: 8	Total contact hours: 36???	L 2	T 1	P 0	
Course	Outcomes (students will be able to)				
List principles of safety, ris	sk management, and material hazards			Κ	
Define safety principles, p	rocedures, standards and regulations			1 K	
Describe safety aspects re	elated to chemicals, fires. electricity, pathogens, etc.			1 K	
Apply SHE management p	rinciples in the industry			K	
Assess the risks and envir	onmental impact of projects and processes			3 K	
Perform tasks such as haz	ard identification or plant layout, etc.			4 K	
	Term: 8 Course List principles of safety, ris Define safety principles, p Describe safety aspects re Apply SHE management p Assess the risks and envir	4544 Management	Term: 8 Total contact hours: 36??? 2 Course Outcomes (students will be able to) List principles of safety, risk management, and material hazards Define safety principles, procedures, standards and regulations Describe safety aspects related to chemicals, fires, electricity, pathogens, etc. Apply SHE management principles in the industry Assess the risks and environmental impact of projects and processes	Term: 8 Total contact hours: 36??? 2 1 Course Outcomes (students will be able to) List principles of safety, risk management, and material hazards Define safety principles, procedures, standards and regulations Describe safety aspects related to chemicals, fires, electricity, pathogens, etc. Apply SHE management principles in the industry Assess the risks and environmental impact of projects and processes	Term: 8 Total contact hours: 36??? Course Outcomes (students will be able to) List principles of safety, risk management, and material hazards Define safety principles, procedures, standards and regulations Describe safety aspects related to chemicals, fires, electricity, pathogens, etc. Apply SHE management principles in the industry Assess the risks and environmental impact of projects and processes K 4

List of Prerequisite Courses

Basic knowledge of chemical processes

List of Courses where this course will be prerequisite

- Design / Research Project II (CEP-4552). This course will be useful for an advanced level course on chemical process safety.

Description of the relevance of this course in the Integrated M. Tech. Program This course will provide key information or several safety-related aspects in the chemical industry and research laboratories.

Course Contents (Topics and subtopics)

Hours

- Introduction to Safety and Risk Management
 - Major industrial disasters and evolution of safety and risk management
- Material hazard GHS MSD physical hazard, toxic hazard and eco-toxicity MSDS (Material Safety Data Sheet), 16-point MSDS, uniformity in MSDS, details of MSDS, LD50 & LD10 dosage values; TLV, STEL, Flash, Vapour pressure; Globally Harmonized System (GHS), R&S phrases
- PSM elements 3
- Why PSM; Overview of 14 elements
 Hazard evaluation techniques What-If, Checklist, HAZOP, FEMA etc.

Overview of each of HAZOP & HAZAN Analysis; Cause and Consequence Analysis; FMEA; LOPA; Fault Tree Analysis; QRA

Hazard identification and assessment - 1. 5

Basic Hazard identification, assessment & measures

- 6
- Flammability and fire safety-extinguishers Fire types, Types of fire extinguishers, Agents for fire-fighting, Fire hydrant
- SHE regulations in India- Factories Act, Water and Environment Act 7
 - Statutory regulations in India; Codes and Standards; Scenario at present and vision for future; Factory Act.
- 8 Human elements in safety - behaviour safety
- Laboratory safety 9

Basics and Dos & Do not.

- 1 **Basic OSH**
- Occupational hygiene basics. 0
- Compliance with statutory safety audits 1
- Overview of safety audits based on ISO standards (14000) 1
- 1 Biosafety
- 2 Biohazards; Basic microbiology of pathogens; Pathogenic risks; Containment; Biosafety levels; Laboratory facilities for handling pathogens; Personal protective equipment; Disinfection and decontamination; Biohazard waste

disposal; Emergency measures.

- 1 Plant layout based on process safety & fire safety-fire hydrant system design
- 3 Solvent yard, warehouse, and plant layout with the fire safety system design.
- 1 Management Practice in SHE in Plant Operation
- Man-management, organization management, policy management;
 Fundamentals of safety management systems for occupational safety, job
 hazard analysis (confined space, height safety, hot jobs); Chemical and plant
 security; Cyber security as applicable to Chemical Projects; Management of
 change; Incident reporting and investigation; Human elements in safety,
 ergonomics and behavioural safety.
- 1 Hazard assessment 2. Process safety, thermal safety, dust explosion etc.
- Inherent safety concepts for processes and unit operations; Powder handling hazards dust explosion.
- 1 Safety in utilities
- Safety in electrical power generation units including nuclear, steam boilers, boiler feed water, thermic fluids, transformers.
- 1 Storage, handling and transportation of hazardous substances
- Safety provisions during transport of petroleum products including LNG and other hazardous materials by ship, rail, air cargo and roads; transport emergency; isolated storage; warehouses; colour coding of pipelines; inventory management; packaging and labelling.
- 1 Environmental Impact Assessment
- 8 Environmental impact and risk assessment (EIRA), risks of projects, processrelated risks, measurement and monitoring tools
- 1 Emergency response plan
- 9 Hazard identification and elements of emergency response plan; OHC categorization, control banding and precautions while handling substances; GMP principles

List of Textbooks / Reference Books

- 1 Elements of Industrial Hazards Ratan Raj Tatiya, CRC Press
- 2 Environmental Life Cycle Analysis Clambrone, D. F., CRC Press
- 3 Handbook on Life Cycle Assessment: Operational Guide to ISO Standards, Kluwer Academic Pub.

CEP-4571: Design/Research Project - $\frac{1}{3}$ (3 = 2+1+0; CT = 50; End-sem = 50; Total = 100)

Course code: CEP- 4571	Course Title: Design/Research Projec - I	t (Credits	= 4
	. 0)	L	Т	Р
Term: 8	Total contact hours: 4571	0	0	4

The Design / Research Project - I is concerned with detailed and critical analysis of literature related to the research OR design topic allotted to the candidate. This will be supervised by two faculty members. The candidate is expected to submit a report as per the guidelines provided below. The report will be evaluated based on the presentation made by the candidate by both the supervisors and one external examiner from the Department OR Industry. A suitable combination of the marks for the report and presentation will be considered for the final evaluation.

Guidelines

- **1.** Typically, the report should contain the following:
- (a) Introduction: 2 pages maximum.
- **(b)** Exhaustive review of the literature (**including** figures): 10 12 pages
- (c) Critical analysis of the literature and comments critical analysis should also contain a quantitative comparison of observations, results, and conclusions amongst the various papers.
- 2. Two typed copies of the report on thesis size bond paper (297 mm x 210 mm) are to be submitted to the Coordinator on the date to be decided by the coordinator. In addition, a soft copy of the report should be submitted to the coordinator. The detailed timetable for the presentation would be communicated.

- 3. The report should be prepared using the Times Roman font (size 12) using 1.5-line spacing leaving a 1-inch margin on all sides. The report should be printed on one side of the paper and should **not** be bound in a hardcover binding. Figures and tables should be shown as a part of the running text. The figures must be sufficiently clear and hand-drawn figures will be acceptable. Particular care must be taken if a figure is photocopied from the source. Each figure must have a sequence number and caption below. Each table must have a sequence number and title at the top.
- 4. Name of the student, title of the problem and year of the examination must be indicated on the top cover of the report. THE NAME OF THE SUPERVISOR (ONLY THE INITIALS) MUST APPEAR ON THE BOTTOM RIGHT CORNER OF THE TOP COVER.
- 5. The report must be precise. All important aspects of the topic should be considered and reported. The total number of pages, including tables, figures, and references should not exceed 30. Chapters or subsections need not be started on new pages while getting the report typed.
- **6.** Typographical errors in the report must be corrected by the student. The student will be discredited for any omission in the report. All the symbols used in the text should be arranged in alphabetical order and given separately after conclusions.
- 7. The list of REFERENCES should be arranged in alphabetical order of the last names of authors. In the text, the reference should be cited with the author's name and year. (authordate style). For example:
- (i) The flow pattern in gas-liquid-solid fluidized beds has been reported in the published literature (Murooka et al., 1982).

OR

- (ii) Murooka et al. (1982) have measured flow patterns in gas-liquid-solid fluidized beds. The title of the article should also be included. The references must be given in the following standard format.
- Format for listing references of articles from periodicals: Murooka S., Uchida K. And Kato (a) Y., Recirculation Turbulent Flow of Liquid in Gas-Liquid-Solid Fluidised Bed", J. Chem. Engg. Japan, 15, 29-34 (1982) Format for listing references of Books:
- (b)
 - Constant R.F., Crystallization, Academic Press, New York, pp. 89-90, 1968.
- Format for listing Thesis: (c)
 - Niranjan K., "Hydrodynamic and Mass Transfer Characteristics of Packed Columns", PhD (Tech.) Thesis, University of Mumbai, 1983.
- Format for listing references of Patents in Chemical Abstracts: Cananaush R.M., U.S. Patent 2,647,141, Cf. C.A. 48, 82636 (1954). (d)
- Format for listing Handbooks, Tables, Symposia etc.: (e)
 - Kumar R and Kuloon N.R., "Formation of Drops and Bubbles", in Advances in Chemical Engineering, Vol.8, T.B. Drew et.al. (Eds.) New York, Academic Press, pp.256-364 (1970).
- (f) Format for listing Private Communications and other categories: Sharma, M.M., Private Communication (1984).
- **8.** Consistency of units should be maintained in the written report. SI systems should be used. [For SI system - Ref. Ind. Chem. Engr., 24, 32, 3 (1983)]. Units used in the literature (if not SI) should be correctly converted.
- 9. The time allotted for the oral presentation is 20 minutes: additional 10 minutes are provided for questions and answers.

10. INCOMPLETE AND CARELESSLY WRITTEN REPORT IS LIABLE TO BE REJECTED.

- 11. The last date for submission will NOT be extended on any grounds whatsoever.
- 12. There must not be any acknowledgement about the guidance by the faculty in the report.
- 13. The report will be evaluated based on (i) rational approach to the problem, ii) correctness and completeness of the written text and iii) performance in the oral presentation.

14. Word-to-word copying from the published article is not permitted.

Course Outcomes (students will be able to....)

1	Collect literature related to an assigned area		K1
2	Understand the lacunae in the literature		K2
3	Analyse the literature and present suitable guidelines		K4
4	Write a neat report following the guidelines		K2, K4
5	Propose a defined plan for the design/research	Λ.	K6
6	Start the execution of design/research project	A V	K6

List of Prerequisite Courses

All courses taught till date.

List of Courses where this course will be prerequisite

1 CEP-4552 Design/Research Project - II

Description of the relevance of this course in the *Integrated M. Tech.* **Program** This project is a continuation of the Design/Research Project-I. This course enables the students to analyse and utilise the information and data gathered in the Design/Research Project-I on a particular Design/Research topic, and come up with a suitable design AND/OR research conclusion. The student should submit and present a written and oral summary on that topic.

Stu	dy 9 (T1	5)								
				Subjects	Credits	Hrs	/wee	ek		
						L	Т	Р	E. S.	Total
60	HU	HU	HUT44 02	Perspectives of Society, Science and Technology	3	2	1	0	50	100
61	HU	HU	HU450 1	Industrial Psychology and Management	3	2	1	0	50	100
62	CE	CET	CET44 07	Advanced Chemical Reaction Engineering	3	2	1	0	50	100
63	CE	CEE	CET4xx x	Advanced Chemical Eng. Elective - I	3	2	1	0	50	100
64	S	ST	xxT4xx x	Advanced Special Elective - VII	3	2	1	0	50	100
65	CE	CEP	CEP45 72	Design / Research Project - II	9	0	0	1 8	75	150
				TOTAL	24	1 0	5	1 8	32 5	650

Course code		HUT4402				
Course title		Perspectives of Society Science and				
		Technology				
Scheme and		2 L: 1 T: 0 P 3 Credits				
Credits		\wedge				
Pre-		All the Science and Engineering Courses				
requisites		so far				
Objectives	1	This course is relevant for future				
of the		professional career of a Chemical				
course		Engineer.				
Course title		Detailed contents	L	Т	P	Tot
Perspective	1	History of Science and Technology and its				4
s of Society		relevance in the respective era				
Science and	2	Recent developments in technology				4
Technology		(chemical, biotechnology energy,				
		telecommunications, etc.) and their				
		influence on society				
	3	Economics and Sustainable Development				4
	4	Value system and Ethics in the profession				2
		of Technology, Science and Engineering.				
	5	Problems before the World and India.				2
		Various approaches in solving them.				
	6	Integrating Issue: Society and Science				4
	7	Industrial disasters and their effect on				2
		science and technology and society				
	8	Environmental degradation, global				2
		warming and their effect on science and				
		technology and society				
	9	IPR issues and their relevance to science				2
		and technology and society				
	10	Some aspects of future of Society,				2
		Technology, Science and Engineering.				
	11	Interdependence of Theology and Science				2
	12,0	Impact of climate change on the nexus of				2
	- (water, energy and water				
	1,6)	Technology and World Peace Role of				2
	VX	Innovation and R&D				
	×44	Industry-Academia Interaction to Enhance				2
	Á.,	Standard of Living				2.0
	,	Total				36
Suggested books						
	1	Science, Technology and Society: An				
		Encyclopedia by Sal Restivo, Oxford				

	T				I	1	
			University Press 2005				
	2		Science, Technology and Society: A				
			Sociological Appraoach by Wenda K.				
			Bauchspies, Jennifer Croissant, Sal P.				
			Restivo				-
	3		Vision of STS: Counterpoints in Science				
			Technology and Society Studies by				
			Stephan H. Cutcliffe, Carl Mitcham, Sunny				
			Press 2012				-
0	4		Chudanta will be able to				
Outcomes	-		Students will be able to				<u> </u>
	CO 1		List some historical scientific				
	CO		developments State importance and implications of				
	2		State importance and implications of patents and some of the relevant laws				
Course code			HU4501				
Course title			Industrial Psychology and				
			Management				
Scheme and			3 L, 1 T, 0 P = 4 Credits				
Credits			//				
Pre-			Α)				
requisites	-	-	This serves and a shall be a different				
Objectives	1		This course equips students with human				
of the			resource management skills to be able to				
course			function effectively in their professional career				
Course title			Detailed contents	L	Т	P	Tot
Equipment	1		Introduction & Overview of the course	2	1	P	3
Design and	2		Changes/Challenges in HRM	2	1		3
Drawing	3		Management Theories	2	1		3
Drawing	4		Research Methodology & Statistical Tools	2	1		3
	5		Management of Change	2	1		3
	6		Organizational Culture & Climate	2	1		3
	7		Knowledge Productivity	2	1		3
	8		New Leadership Motivation Theories	2	1		3
	9		Talent Management	2	1		3
	10		Training & Development	1	1		2
	11		Performance Management	1	1		2
	12		Selection and Recruitment	1	1		2
	13		Compensation, Unions and	2	1		3
	13		Entrepreneurship				3
			Total	23	13	0	36
Suggested	1		Personality and Organization, Argyris C.	23	13	U	30
reference	2		The Essence of Leadership, Locke, Edwin A				
books	3		Organisational Behaviour, Robbins S				
	4		Managing Human Resources, Bach, S.				
	_	4	2005				
	5		Human Resource Management: A				
		V	Contemporary Approach, Claydon, T and J.				
		7	BeardwellFolger, R. and R.				
Outcomes	<u> </u>	-0	Students will be able to				
- #10011103	СО	.O	Students should be able to explain the				
	1	7_	fundamental concepts of IPHRM.				
	CO.)	Students should be able to analyze				
	2	1	practical situations				
	CO		Students will be able to provide applicable				
	0		solutions				
Course code	12		CET4543				
Course title	Α.		Advanced Mass Transfer				
Scheme and	7		2 L: 1 T: 0 P 3 Credits				
Credits			L L. I II V I J CICUILS				
Pre-							
requisites							
requisites							

Objectives of the course	1					
Course title		Detailed contents	L	Т	Р	Tot
	1	Thermodynamic, kinetic and hydrodynamic physical phenomena governing interfacial mass transfer and generation of interfacial transfer area.	6	3	-	9
	2	Shell balances to set up lumped parameter models and more sophisticated differential equation based models to describe mass transfer under various commonly encountered industrial situations.	6	3		9
	3	The Stefan-Maxwell Unified approach to mass transfer.	2	1		3
	4	Standard algorithms for multicomponent countercurrent mass transfer and their applicability.	4	2		6
	5	Mass Transfer equipment of Industrial significance and their quantitative characterization.	6	3		9
		Total	24	12		36
Suggested books		Α σ				
Suggested books /reference books	1	Transport Phenomena, R.B. Bird, W.E. Stewart, E.N. Lightfoot				
	2	Transport Phenomena, R.S. Brodkey				
	3	Momentum, Heat and Mass Transfer, Bennet and Myers				
	4	Fluid Mechanics, Pijush K. Kundu				
	5	Fluid Mechanics, K. Subramanya				
	6	Fluid Dynamics, G.K. Batchelor				
	7	V				
Outcomes		Out as lade				
		Outcomes Students will be able to				
	CO 1	Describe and discuss principles of various mass transfer operations (K2)				
	CO 2	Calculate Mass transfer rates for given mass transfer operation (K3)				
	CO 3	Design various components of equipment used in mass transfer operations (K5)				
	CO 4	Compare various options of mass transfer operations and equipment and select an appropriate equipment / operation for a particular situation (K5)				

Minor Degree: Special Electives

Lipids

SP #	Course Code (IOCB)	Course Code (MARJ)	Туре	List of Subjects
1		SLT430 2	Theory	Introduction to Lipid Technology
2		SLT430 3	Theory	Chemistry of Lipids and their applications
3		SLT440 3	Theory	Lipid Processing Technology I
4	_	SLT440 4	Theory	Production and Applications of Soaps, Surfactants and Detergents
5		SLT440 5	Theory	Lipid Processing Technology II
6		SLT450 6	Theory	Essential Oils and Cosmetics
7		SLT450 7	Theory	Technology of Oleochemicals
1		SFP430 1	Laborator y	Lipids Laboratory-l
2		SLP440 2	Laborator y	Lipids Laboratory-II
			,C	

C		CIT4202				
Course		SLT4302				
code						
Course		Introduction to Lipid Technology				
title		Ú.				
Scheme		2L: 1T: 0P \(\sqrt{3} \) credits	2	1	0	3
and		.\`				
Credits		N N				
Pre-		,0				
requisit		()				
es .		. •				
Descript		This course will give an overview of				
ion of		applications of technology and				
course		engineering principles in oil and lipid				
course		industry				
Objectiv	1	Understand the industrial chemistry of				
es of		oils, fat v acids, surfactants and				
the		oleochemicals.				
course		oleocifettiicais.				
Course	2	Understand the chamistry habind the cile				
		Understand the chemistry behind the oils,				
		lipids, essential oils.				
	3	Understand and explain the mechanism,				
		theory and practice of oil extraction,				
		refining and modification.				
		λ				
Syllabus	1	General introduction to oils, fats, waxes		2		6
		wand essential oils; Important Minor/ Non-				
		triglyceride Constituents of natural oils				
		and fats; Separation and isolation of fatty				
		acids; Chemical properties of fatty acids				
		and their esters; Chemical analysis of oils				
	2	Glyceride Synthesis, acylation procedures	4	2		6
		Introduction and removal of protecting				
	7	groups ; Advanced methods of analysis of				
	'	oils				
	3	Introduction to technology of oil and fat	8	4		12
		production and edible oil processing:		_		
		Natural sources of oils and fats, domestic				
		and world production, trade and				
		i janu wonu production, trade and				

		marketing of oilseeds and oils; Newer				
		sources of oils and fats; Oilseeds				
		processing; Recovering and production of				
		oils and fats from different sources like palm oil, rice bran oil, etc.				
	4	Antinutritional constituents of oilseeds;	8	4		12
	_	Newer techniques of refining of oils and		_		12
		fats; Manufacture of butter, margarine				
		and ghee, Vanaspati, bakery and				
		confectionery fats and fatty foods;				
		Protection against auto oxidation				
		.0	24	12	0	36
Suggest	1	The Chemistry of Oils and Fats: Sources,				
ed		Composition, Properties and Uses, Frank				
books/		D. Gunstone, Blackwell Publishing Ltd, UK				
referen		(2004)				
се	2	Bailey's Industrial Oil and Fat Products,				
		Sixth Edition Vol. 6: Industrial and				
		Nonedible Products from Oils and Fats, Ed.				
		Fereidoon Shahidi, Wiley Interscience				
		Publication (2005).				
	3	Chemistry and technology of oils and fats				
		by Prof. M. M. Charrabarti, allied				
		publishers (2003).				
		()				
Outcom		On completion of the course, the students				
es		will be able to				
	CO	Ability to understand and explain the constitution of Oils and Fats and their				
	1	importance				
	СО	Ability to conceptualize and develop the				
	2	different modes of derivatizations from				
	_	oils/ fatty acids.				
	CO	Able to understand fundamental				
	3	knowledge on basics of post harvest				
		technology for oilseeds, chemistry				
		involved in the oil /fat production and				
		refining	_			
		(L	T	P	Tota
Course		SLT4303				I I
code		3114303				
Course		Chemistry of Lipids				
title		C				
Scheme		2L: 1T: 0P 3 credits	2	1	0	3
and		Α, Υ				
Credits		7				
Pre-		0,				
requisit es		λ*				
Descript		Students will be able to understand the				
ion of		industrial chemistry of oils and fatty acids.				
course		They will be trained with respect to basics				
		of sources of oils, minor constituents,				
		physical and chemical properties of oils				
		and fatty acids, various derivatisation				
		pathways and related analytical tools.				
Objectiv	1 1	× -				
es of the	,					
course						
Course	2					
	3					
L		<u> </u>				

Syllabus	1	General introduction to oils, fats and waxes: Chemical structure, sources and composition. Classification of oils and fats by source type, fatty acid composition and drying properties. Statistics of Indian as well as world production of commercial oil seeds/ oil bearing materials, oils and fats, importance as feedstock for food and chemical industries.	2	1		3
	2	Physical characteristics of natural oils and fats: Oiliness and viscosity, density and expansibility, thermal properties, smoke, fire and flash points, solubility and miscibility, refractive index and molecular refraction, adsorption spectra, electrical properties, colour value.	2	1		3
	3	Fatty acids: Nomenclature and classification; saturated, monounsaturated, polyunsaturated fatty acid and essential fatty acids. Physical properties of fatty acids and their esters. Polymorphism and crystal structure, solubility, refractivity, ortical activity, spectroscopic properties	2	1		3
	4	Important minor/ non-triglyceride constituents of natural oils and fats: Phospholipids, galactolipids, sphingolipids, diacylglycerols, monoacylglycerols, sulfolipids, waxes, sterols, triterpene alcohols, and their esters, tocopherols/tocotrienols, lipid-soluble vitamins, hydrocarbons, pigments, phenolic compounds etc.	2	1		3
	5	Separation and isolation of fatty acids: Distillation, crystallization and counter current distribution. Methods of structure determination.	4	2		6
	6	Hydrolysis and esterification: Acid-, base-catalyzed and enzymatic hydrolysis of oils/fats, Fat splitting process. Neutralization, saponification, formation of metallic soaps. Acylation, esterification, interesterification, transesterification.	4	2		6
	7	Chemical reactions of oils/fats and fatty acids. Estolide synthesis. Hydrogenation, halogenation, epoxidation, hydroxylation, ozonolysis, metathesis. Thermal and oxidative polymerization, Diels-Alder reaction, Stereomutation, double bond migration and cyclization.	4	2		6
	8	Glyceride Synthesis, acylation procedures, introduction and removal of protecting groups, 1-monoglycerides, 2-monoglycerides, 1,2-diglycerides, 1,3-diglycerides, Trans fatty acids	4	2		6
Suggest ed books/ referen ce	1	Treatise on fats, fatty acids and oleochemicals by O. P. Narula, Vol I & II, Industrial Consultants (India), (1994)	24	12	0	36
	2	Bailey's Industrial Oil and Fat Products, Sixth Edition Vol. 6: Industrial and Nonedible Products from Oils and Fats, Ed.				

-		1 =				
		Fereidoon Shahidi, Wiley Interscience Publication (2005).				
	3	Chemistry and technology of oils and fats				
		by Prof. M. M. Chakrabarti, allied publishers (2003).				
		publishers (2003).				
Outcom		On completion of the course, the students				
es		will be able to				
	CO	Able to understand fundamental				
	1	knowledge on basics of post harvest technology for oilseeds, chemistry				
		involved in the oil /fat production and				
		refining				
	СО	Able to describe the plant and processes				
	2	for oil/ fat extraction				
	co	Able to understand and explain the meal				
	3	composition, upgradation of meal/ cake and antinutritional factors and				
		detoxification				
	СО	Able to explain the fat storage, auto				
	4	oxidation and spoilage				
		0.		-		Taka
		, 0	L	Т	Р	Tota I
Course code		SLT4403				
Course		Lipid Processing Technology I				
title						
Scheme		2L: 1T: 0P 3 credits	2	1	0	3
and Credits		G.				
Pre-		~~~~				
requisit		3				
es		~				
Descript		This course will give an overview of				
ion of course		applications of technology and engineering principles in oil and lipid				
course		industry				
Objectiv	1	Students will understand the mechanism,				
es of		theory and practice of oil extraction.				
the		, Ø`				
course	2	They will be able to explain refining of				
	_	oils/fats, fat modification processes.				
	3	Understand and explain the mechanism,				
		theory and practice of oil extraction,				
		refining and modification.				
Syllabus	1	Storage, sampling, grading, cleaning,	2	1		3
- ya.ba5	-	crushing, and heat treatment of oilseeds	_	_		
	2	Mechanical expression, solvent extraction,	4	2		6
		rendering and other methods of				
		recovering oils and fats. Economic aspects of these processes.				
+	3	Specific methods for the production of	2	1		3
	-	palm oil, palm kernel oil and rice bran oil.	_			
	4	Technical refining of oils for industrial	4	2		6
	(uses, detoxification and technical				
	V	products from oil cakes, edible products from oil meals, synthetic fatty material.				
	5	Antinutritional constituents of oilseeds.	4	2		6
		General methods of upgrading and	_	_		
		utilization of oils, oil cakes and other				
		products, Protein concentrates and				

		isolates from oil meal				
	6	Processes and equipment employed for	4	2		6
		refining, bleaching, deodorization,	_	_		
		hydrogenation and winterization of oils or				
		edible purposes				
	7	Newer techniques of refining of oils and	2	1		3
	-	fats	_	_		
	8	Composition and properties of these	2	1		3
		spoilage during storage of fats, and fat				
		products, protection against auto				
		oxidation				
		0	24	12	0	36
Suggest	1	The Chemistry of Oils and Fats: Sources,				
ed		Composition, Properties and Uses, Frank				
books/		D. Gunstone, Blackwell Publishing Ltd, UK				
referen		(2004).				
ce		. /				
	2	Bailey's Industrial Oil and Fat Products,				
		Sixth Edition Vol. 6: Industrial and				
		Nonedible Products from Oils and Fats, Ed.				
		Fereidoon Shahidi, Wiley Interscience				
	_	Publication (2005).				
	3	Chemistry and technology of oils and fats				
		by Prof. M. M. Chakrabarti, allied				
	_	publishers (2003).				
	4	Fatty Acids in Industry, R. W. Johnson, and				
		E. Fritz, eds., Marcel Dekker, Inc., New				
	5	York, (1989)				
	9	Oils and Fats Manual, Eds. A. Karleskind				
		and JP. Wolff, Vols. I and II, Intercept Ltd.,				
	6	Andover, U.K. (1996). Fatty Acid and Lipid Chemistry, F. D.				
	0	Gunstone, Blackie Academic and				
		Professional, London, U.K. (1996).				
		11016331011011, E0110011, U.N. (1330).				
Outcom		On completion of the course, the students				
es		will be able to				
-	СО	Understand and explain the constitution of				
	1	oils and fats and their importance as				
		feedstock for food and chemical				
		industries. (K2)				
	СО	Analyze and illustrate the physical,				
	2	chemical and stability characteristics of				
		oils and fats/ fatty				
		acids. (K4)				
	СО	Understand the technical importance of				
	3	the ininor constituents of natural oils and				
		fats.(K2)				
	СО	Implement different modes of				
	4	derivatizations of oils/ fatty acids. (K3)				
	CO	Identify and interpret the tools for				
	5	chemical analysis of oils and fats. (K3)				
		10				Tota

	,Õ)	L	Т	Р	Tota I
Course code	0	SLT4404				
Course title	20,	Production and Applications of Soaps, Surfactants and Detergents				
Scheme and Credits	٧	2L: 1T: 0P 3 credits	2	1	0	3
Pre- requisit						

	ı					
es						
Descript						
ion of						
course						
Objectiv	1	Students will understand the				
es of		mechanism,theory and practice of				
the		Surfactant production.				
course						
	2	They will be able to explain types of				
		soaps,detergents and their formulations				
		AV.				
Syllabus	1	Raw materials for the soap industry		1		3
		classification and selection of raw				
		materials, properties of soaps and soap				
		solution. Testing and evaluation, Indiar				
		Standard Institution methods, essentia				
		oils and other ingredients for soaps.				
	2	Phases in soap boiling, processes	2	1		3
		employed in the manufacture of soap				
		various types of soaps and cleaning				
		preparations				
	3	Detergents, their classification, raw	6	3		9
		materials, processes, and plants for the				
		manufactures of detergents for domestic				
		and industrial consumption, product				
		evaluation, Indian Standard Institution				
		Methods, essential oils and other				
		ingredients for detergents.				
	4	Plant & processes for the production of	4	2		6
	~	important anionic, non-ionic, cationic and	-	_		
		amphoteric surfactants.				
	5	Fluorinated surfactants, new generation	4	2		6
	3	surfactants such as Gemini surfactants		_		
		silicon surfactants and sugar based				
		surfactants.				
	6	Fluorinated surfactants, new generation	2	1		3
	0	surfactants such as Gemini surfactants		-		
		silicon surfactants and sugar based				
		surfactants and sugar based				
	7	Application of soaps, surfactants and	4	2		6
	'	detergents in food, pharmaceuticals				0
		textile, leather, surface coating, adhesives				
		and other industries	2.4	10		26
		,0	24	12	0	36
C	-	Company Duraf L C Karra				
Suggest	1	Soaps by Prof. J. G. Kane				
ed		, 7				
books/		4				
referen		Ø,				
се	_	Treation on fate C. II				
	2	Treatise on fats, fatty acids and				
		oleochemicals by O. P. Narula, Industria				
	_	Consultants (India), Vo. I & II (1994)				
	3	Fats, Oleochemicals and surfactants				
		challenges in 21 st Century by V. V. S				
		Mani and A. D. Shitole, Oxford and IBH				
		Publishing Co. Pvt. Ltd. (1997)				
	4	Manufacture of soaps, other detergents				
		and glycerin by E. Woollatt, John Wiley				
	١ ١	and Sons (1985)				
Outcom		On completion of the course, the students				
es		will be able to				
	CO	Able to describe the plant and processes				

	1	for soaps, surfactants and detergents extraction				
	CO 2	Able to understand and raw materials and formulations of common types of surfactants, soaps and detergents				
	CO 3	Able to explain new generation of surfactants and quality standards of soaps, surfactants and detergents				
	CO 4	Able to explain the industrial applications of soaps and surfactants				
		Ov	L	Т	P	Tota
Course code		SLT4405				•
Course title		Lipid Processing Technology II				
Scheme and		2L: 1T: 0P 3 credits	2	1	0	3
Credits Pre- requisit		19.				
es Descript ion of		, 0				
course Objectiv es of	1	,C				
the course						
	2	\(\sigma\)				
Syllabus	1	Fat splitting: Hydrolysis of oils and fats; composition of partially split fats, Technology of rat splitting, Effect of temperature, pressure, catalyst and ratio of reactants in hydrolysis of fats; degree	7	2		9
	2	of splitting; Fatty acid fractionation: distillation, crystallization, high purity fatty acid products blends, etc	4	2		6
	3	Hydrogenation of oils: Significane of hydrogenation, Catalysts for hydrogenation, kinetics of reaction, effect of operating parameters on kinetics, selectivity and isomer formation, trans fat replacement solutions and technology, worldwide trends & regulations.	7	2		9
	4	Production of fatty alcohols	4	2		6
	5	Production of bio diesel and green diesel	26	10	0	6 36
		0				
Suggest ed books/ referen ce	1	M.M Chakrabarty. Chemistry and Technology of Oils and Fats. Allied Publishers Pvt. Ltd. New Delhi				
	2	Treatise on fats, fatty acids and oleochemicals by O. P. Narula, Industrial Consultants (India), Vo. I & II (1994)				
	3	Bailey's Industrial Oil and Fat Products, Sixth Edition Vol. 6: Industrial and Nonedible Products from Oils and Fats, Ed. Fereidoon Shahidi, Wiley Interscience Publication (2005).				

	4	Hydrogenation of Oil & Fat Edited by				
	•	H.B.W. Patterson Applied Science				
		The state of the s				
		publishers (1983)				
	5	Gupta, M. K., Practical guide to vegetable				
		oil processing. AOCS Press, 2008 Urbana,				
		Illinois.				
	6	Fats and oils, Formulating and Processing				
		for Applications, 3rd Edition,2009, Richard				
		D.O. Brien.				
	_					
	7	Fats and Oils Handbook, Michael Bockisch,				
		1st Edition, 1998, AOCS Press				
		Ü				
Outcom		V.				
		· V				
es		Α '				
	CO	. 0				
	1	0~				
	<u>co</u>					
		(*				
	2	-				
	СО	())				
	3					
 		\\\				
	СО	.)				
	4	δ'				
'	!	A)	L	Т	Р	Tota
		. 0	_	•		iota
	1	, ·				<u> </u>
Course		SLT4506				
code						
Course		Essential Oils and Cosmetics				
		Essential Ons and Cosmetics				
title		, *				
Scheme		2L: 1T: 0P 3 credits	2	1	0	3
and		X,				
Credits		G				
		A ^V				
Pre-						
requisit		2.				
es .		~				
		,0				
Descript		()				
ion of						
course		/				
Objectiv	1	1.0				
es of	-	N°				
		T.				
the						
course		0.7				
	2	Students will understand the chemistry of				
	-					
		cosmetics products, raw materials and				
		other ingredients required and their				
		significance in cosmetics formulations.				
	 	5				
Cyllabara	, 	Forestial allow substantian forms differ	_	2		
Syllabus	1	Essential oils: extraction from different	6	2		8
		t a silva a sa sa a sa ki a sa				
		sources, separation and purification.				
		Enflurage, Maceration, solvent extraction,				
		Enflurage, Maceration, solvent extraction, supercritical extraction, water distillation,				
		Enflurage, Maceration, solvent extraction, supercritical extraction, water distillation, water steam distillation and steam				
		Enflurage, Maceration, solvent extraction, supercritical extraction, water distillation, water steam distillation and steam distillation. Analysis of essential oils for RI,				
	,(Enflurage, Maceration, solvent extraction, supercritical extraction, water distillation, water steam distillation and steam distillation. Analysis of essential oils for RI,				
	3	Enflurage, Maceration, solvent extraction, supercritical extraction, water distillation, water steam distillation and steam distillation. Analysis of essential oils for RI, optical rotation, density, solubility, boiling				
		Enflurage, Maceration, solvent extraction, supercritical extraction, water distillation, water steam distillation and steam distillation. Analysis of essential oils for RI, optical rotation, density, solubility, boiling point, melting point.				
	2 10	Enflurage, Maceration, solvent extraction, supercritical extraction, water distillation, water steam distillation and steam distillation. Analysis of essential oils for RI, optical rotation, density, solubility, boiling point, melting point. Characteristics and composition of Indian	6	2		8
	2	Enflurage, Maceration, solvent extraction, supercritical extraction, water distillation, water steam distillation and steam distillation. Analysis of essential oils for RI, optical rotation, density, solubility, boiling point, melting point.	6	2		8
	2 010	Enflurage, Maceration, solvent extraction, supercritical extraction, water distillation, water steam distillation and steam distillation. Analysis of essential oils for RI, optical rotation, density, solubility, boiling point, melting point. Characteristics and composition of Indian essential oils like sandal wood oil, pine oil,	6	2		8
	2 20	Enflurage, Maceration, solvent extraction, supercritical extraction, water distillation, water steam distillation and steam distillation. Analysis of essential oils for RI, optical rotation, density, solubility, boiling point, melting point. Characteristics and composition of Indian essential oils like sandal wood oil, pine oil, cedar wood oil, palmrosa oil, patchouli,	6	2		8
	2 000	Enflurage, Maceration, solvent extraction, supercritical extraction, water distillation, water steam distillation and steam distillation. Analysis of essential oils for RI, optical rotation, density, solubility, boiling point, melting point. Characteristics and composition of Indian essential oils like sandal wood oil, pine oil, cedar wood oil, palmrosa oil, patchouli, mint, clove, cardamom, cinnamon leaf	6	2		8
	2	Enflurage, Maceration, solvent extraction, supercritical extraction, water distillation, water steam distillation and steam distillation. Analysis of essential oils for RI, optical rotation, density, solubility, boiling point, melting point. Characteristics and composition of Indian essential oils like sandal wood oil, pine oil, cedar wood oil, palmrosa oil, patchouli,	6	2		8
	2 200	Enflurage, Maceration, solvent extraction, supercritical extraction, water distillation, water steam distillation and steam distillation. Analysis of essential oils for RI, optical rotation, density, solubility, boiling point, melting point. Characteristics and composition of Indian essential oils like sandal wood oil, pine oil, cedar wood oil, palmrosa oil, patchouli, mint, clove, cardamom, cinnamon leaf oils, coriendor oil, ajwan, cumene,	6	2		8
	2 200	Enflurage, Maceration, solvent extraction, supercritical extraction, water distillation, water steam distillation and steam distillation. Analysis of essential oils for RI, optical rotation, density, solubility, boiling point, melting point. Characteristics and composition of Indian essential oils like sandal wood oil, pine oil, cedar wood oil, palmrosa oil, patchouli, mint, clove, cardamom, cinnamon leaf oils, coriendor oil, ajwan, cumene, vetivert, eucalyptus, rosha oil, citrus oils,	6	2		8
	2 POINT	Enflurage, Maceration, solvent extraction, supercritical extraction, water distillation, water steam distillation and steam distillation. Analysis of essential oils for RI, optical rotation, density, solubility, boiling point, melting point. Characteristics and composition of Indian essential oils like sandal wood oil, pine oil, cedar wood oil, palmrosa oil, patchouli, mint, clove, cardamom, cinnamon leaf oils, coriendor oil, ajwan, cumene, vetivert, eucalyptus, rosha oil, citrus oils, orange oils, rose, jasmine juichameli oils	6	2		8
	2 API	Enflurage, Maceration, solvent extraction, supercritical extraction, water distillation, water steam distillation and steam distillation. Analysis of essential oils for RI, optical rotation, density, solubility, boiling point, melting point. Characteristics and composition of Indian essential oils like sandal wood oil, pine oil, cedar wood oil, palmrosa oil, patchouli, mint, clove, cardamom, cinnamon leaf oils, coriendor oil, ajwan, cumene, vetivert, eucalyptus, rosha oil, citrus oils, orange oils, rose, jasmine juichameli oils etc. Role of essential oil in aroma therapy.	6	2		8
	2	Enflurage, Maceration, solvent extraction, supercritical extraction, water distillation, water steam distillation and steam distillation. Analysis of essential oils for RI, optical rotation, density, solubility, boiling point, melting point. Characteristics and composition of Indian essential oils like sandal wood oil, pine oil, cedar wood oil, palmrosa oil, patchouli, mint, clove, cardamom, cinnamon leaf oils, coriendor oil, ajwan, cumene, vetivert, eucalyptus, rosha oil, citrus oils, orange oils, rose, jasmine juichameli oils etc. Role of essential oil in aroma therapy.	6	2		8
	2	Enflurage, Maceration, solvent extraction, supercritical extraction, water distillation, water steam distillation and steam distillation. Analysis of essential oils for RI, optical rotation, density, solubility, boiling point, melting point. Characteristics and composition of Indian essential oils like sandal wood oil, pine oil, cedar wood oil, palmrosa oil, patchouli, mint, clove, cardamom, cinnamon leaf oils, coriendor oil, ajwan, cumene, vetivert, eucalyptus, rosha oil, citrus oils, orange oils, rose, jasmine juichameli oils etc. Role of essential oil in aroma therapy.	6	2		8

		concert hadanic and substantively and CC				
		sensory hedonic and substantively and GC tests.				
	3	Common ingredients used in cosmetics surfactants, additives, antioxidants preservatives. Equipments, plants and machinery used for manufacture.		2		6
	4	Formulations of different cosmetic creams such as hair care products, skin creams. Shaving products, after shave products. Aerosol cosmetics, perfumes and aromatic products.		2		6
	5	Evaluation and Efficacy of cosmetics products. Stability tests and product specifications		1		4
	6	Concept of product design, labeling claiming and claim support understanding of current needs, translation of current needs to products		1		4
		7)	26	10	0	36
Suggest ed books/ referen ce	1	Essential oils (Vol. I to VI) by Guenther E.				
	2	Modern Cosmetics by Thomssen Universal Publishing Corporation (1951)				
	3	Formulations and functions of cosmetics by Jellinek, Wiley Interscience 1970)				
	4	Hand book of Cosmetic Science and Technology, Third Edition, André O. Barel Marc Paye, Howard I. Maibach				
	5	Cosmetics, Science and Technology Edward Sagarin 1957				
	6	Perfume and flavour materials of natural origin by Arctander S.				
Outcom es		,,,				
	CO 1	Discuss novel process of extraction of essential oils from various natural sources and different types of Essential Oils. (K5)				
	CO 2	Select the various ingredients and manufacturing processes for various cosmetics.(K4)				
	CO 3	Develop formulations of different cosmetics products (K3)				
	CO 4	Summarize stability analysis of cosmetic formulations . (K3)				
		΄δ,	L	Т	Р	Tota I
Course code		SLT4507				
Course title		Technology of Oleochemicals				
Scheme and Credits		2L: 1T: 0P 3 credits	2	1	0	3
Pre- requisit es	7	8				
Descript ion of course		Students will understand the chemistry and technology of Oleochemicals involved while processing and manufacturing various Oleochemicals. They will be able				

Arricus processes, evaluation techniques and schemes according to the chemistry involved. Objectives of the course 2 Syllabus 1 Glycerine: Processes for treatment of sweet water and spent soap lye. Manufacture of glycerine from natural sources. Synthetic glycerin, grades of glycerine, properties and utilization of glycerine products obtained by interesterification, hydrogenation, oxidation and layrolysis. Metallic soaps. 4 Products obtained by interesterification, hydrogenation, oxidation and layrolysis. Metallic soaps. Metallic soap		1					
and schemes according to the chemistry involved. Dispective sets of the course Course			to explain its synthesis, applications in				
Objective so of the course Syllabus Giycerine: Processes for treatment of sweet water and spent soap lye. Manufacture of glycerine from natural sources. Synthetic glycerine, grades of glycerin, properties and utilization of glycerin. Properties and utilization of glycerin. Products obtained by interesterification, hydrogenation, oxidation and pyrolysis. Metallic soaps. Betallic soaps. Gethology of drying oils and resins Gethology of driving oils and oils by R. J. Hamlon, Elsevier Applied Science (1987) Gethology of fats and oils by R. J. Hamlon, Elsevier Applied Science (1987) Gethology of driving oils and surfactants Gethology of driving oils and driving oils and surfactants Gethology of driving oils and resins							
Dejective so of the course 2			, ,				
syllabus 1 Glycerine: Processes for treatment of sweet water and spent soap lye. Manufacture of glycerine from natural sources. Synthetic glycerin, grades of glycerin, properties and utilization of glycerin, properties and utilization of glycerin. Products obtained by interesterification, hydrogenation, oxidation and lyprolysis. Metallic soaps. 2 Products obtained by interesterification, hydrogenation, oxidation and lyprolysis. Metallic soaps. Metallic soaps. 3 Technology of drying oils and resins 4 2 6 6 dilyceride route, solvent process, fusion process, classification of alkyd resins according to oil length (short/medium/long oil), choice of polybasic acid, etc. 5 Miscellaneous fat-based produced: Manufacture and utilization of nitrogen, phospherqus and sulfate containing products. 6 Applications of oleochemicals in food, pharmaceutical, textile, plastic, leather and other industries 5 Uggest ed books/ reference 2 Treatise pon fats, fatty acids and oleochenicals by O. P. Narula, Industrial Consulta)ts (India), Vo. I. & III (1994) 3 Recent), advances in chemistry and technology of fats and oils by R. J. Harviton, Elsevier Applied Science (1987) 4 Natural fatty acids and their sources by E. H. Pryde 5 Fatty Acids by Markley K. S. Vol. 1 to IV, Robert E. Krieger publishing Co. (1973) 6 Atty acids in industry by R. W. Johnson, Marcel Dekker Inc. (1989) 7 Variats, Oleochemicals and surfactants challenges in 21st Century by V. V. S. Mani and A. D. Shitole, Oxford and IBH Publishing Co. PV. Ltd. (1997) 8 Manufacture of Soaps, other detergents and Sons (1985) Outcom es	Objective	1	involved.				
Syllabus 1	es of the	•					
sweet water and spent soap lye, Manufacture of glycerine from natural sources. Synthetic glycerin, grades of glycerin, properties and utilization of the products obtained by interesterification, hydrogenation, oxidation and pyrolysis. Metallic soaps. Technology of drying oils and resins Technology of drying oils and resins Technology of drying oils and resins Technology of drying oils and resins Technology of drying oils and resins Technology of drying oils and resins Technology of drying oils and resins Technology of drying oils and resins Technology of drying oils and resins Technology of drying oils and resins Technology of drying oils and resins Technology of drying oils and resins Technology of drying oils and resins Technology of drying oils and resins Technology of drying oils and resins Technology of glyceride route, solvent process, fusion process, classification of alkyd resins according to oil length (short/ medium/long oil), choice of polybasic acid, etc. Singular drying produced: Manufacture and utilization of nitrogen, phospherqus and sulfate containing products Miscellaneous fat-based produced: Manufacture and utilization of nitrogen, phospherqus and sulfate containing products Applications of oleochemicals in food, pharmaceutical, textile, plastic, leather and other industries Technology of phospherqus and sulfate to decochenyicals by O. P. Narula, Industrial Consultants (india), Vo. I & II (1994) Recent advances in chemistry and technology of fats and oils by R. J. Hamilton, Elsevier Applied Science (1987) A Natural fatty acids and their sources by E. H. Pryde Thy decomplication of the produced: A D. Shitole, Oxford and IBH Publishing Co. Pt. Lttd. (1997) Recent and Sons (1985) Co Able to understand the basic process of manufacture of different oleochemicals		2	۸.				
sweet water and spent soap lye, Manufacture of glycerine from natural sources. Synthetic glycerin, grades of glycerin, properties and utilization of the products obtained by interesterification, hydrogenation, oxidation and pyrolysis. Metallic soaps. Technology of drying oils and resins Technology of drying oils and resins Technology of drying oils and resins Technology of drying oils and resins Technology of drying oils and resins Technology of drying oils and resins Technology of drying oils and resins Technology of drying oils and resins Technology of drying oils and resins Technology of drying oils and resins Technology of drying oils and resins Technology of drying oils and resins Technology of drying oils and resins Technology of drying oils and resins Technology of drying oils and resins Technology of glyceride route, solvent process, fusion process, classification of alkyd resins according to oil length (short/ medium/long oil), choice of polybasic acid, etc. Singular drying produced: Manufacture and utilization of nitrogen, phospherqus and sulfate containing products Miscellaneous fat-based produced: Manufacture and utilization of nitrogen, phospherqus and sulfate containing products Applications of oleochemicals in food, pharmaceutical, textile, plastic, leather and other industries Technology of phospherqus and sulfate to decochenyicals by O. P. Narula, Industrial Consultants (india), Vo. I & II (1994) Recent advances in chemistry and technology of fats and oils by R. J. Hamilton, Elsevier Applied Science (1987) A Natural fatty acids and their sources by E. H. Pryde Thy decomplication of the produced: A D. Shitole, Oxford and IBH Publishing Co. Pt. Lttd. (1997) Recent and Sons (1985) Co Able to understand the basic process of manufacture of different oleochemicals			Λ.V				
hydrogenation, oxidation and pyrolysis: Metallic soaps. Technology of drying oils and resins A Alkyd resins: Fatty acid route, mono glyceride route, solvent process, fusion process, classification of alkyd resins according to oil length (short/medium/long oil), choic of polybasic acid, etc. Miscellaneous fat-based produced: Manufacture and utilization of nitrogen, phospherous and sulfate containing products Applications of oleochemicals in food, pharmaceutical, textile, plastic, leather and other industries Applications of oleochemicals in food, pharmaceutical, textile, plastic, leather and other industries Applications of oleochemicals in food, pharmaceutical, textile, plastic, leather and other industries Applications of oleochemicals in food, pharmaceutical, textile, plastic, leather and other industries Treatise, on fats, fatty acids and oleochenicals by O. P. Narula, Industrial Consultants (India), Vo. I & II (1994) Recent advances in chemistry and technology of fats and oils by R. J. Harniton, Elsevier Applied Science (1987) Natural fatty acids and their sources by E. H. Pryde Fatty Acids by Markley K. S. Vol. I to IV, Robert E. Krieger publishing Co. (1973) Fats, Oleochemicals and surfactants challenges in 21st Century by V. V. S. Mani and A. D. Shitole, Oxford and IBH Publishing Co. Pvt. Ltd. (1997) Manufacture of soaps, other detergents and glycerin by E. Woollatt, John Wiley and Sons (1985) Outcom es CO Able to understand the basic process of manufacture of different oleochemicals	Syllabus	1	sweet water and spent soap lye, Manufacture of glycerine from natural sources. Synthetic glycerin, grades of glycerin, properties and utilization of glycerine	4	2		6
Alkyd resins: Fatty acid route, mono glyceride route, solvent process, fusion process, classification of alkyd resins according to oil length (short/ medium/long oil), choice of polybasic acid, etc. Miscellaneous fat-based produced: Manufacture and utilization of nitrogen, phospherous and sulfate containing products. Applications of oleochemicals in food, pharmaceutical, textile, plastic, leather and other industries Glycerin, Key rosmetic ingredient by Eric Jugermann, Marcel Dekker Inc., (1991) Glycerin, Key rosmetic ingredient by Eric Jugermann, Marcel Dekker Inc., (1991) Treferen ce Treatise on fats, fatty acids and oleochemicals by O. P. Narula, Industrial Consultants (India), Vo. I & II (1994) Recent advances in chemistry and technology of fats and oils by R. J. Hamilton, Elsevier Applied Science (1987) Antural fatty acids and their sources by E. H. Pryde Tatty Acids by Markley K. S. Vol. I to IV, Robert E. Krieger publishing Co. (1973) Fatty Acids by Markley K. S. Vol. S. Mani and A. D. Shitole, Oxford and IBH Publishing Co. Pvt. Ltd. (1997) Manufacture of soaps, other detergents and glycerin by E. Woollatt, John Wiley and Sons (1985) Outcom es CO Able to understand the basic process of manufacture of different oleochemicals		2	hydrogenation, oxidation and pyrolysis.	4	2		6
Alkyd resins: Fatty acid route, mono glyceride route, solvent process, fusion process, classification of alkyd resins according to oil length (short/ medium/long oil), choice of polybasic acid, etc. Miscellaneous fat-based produced: Manufacture and utilization of nitrogen, phospherous and sulfate containing products. Applications of oleochemicals in food, pharmaceutical, textile, plastic, leather and other industries Glycerin, Key rosmetic ingredient by Eric Jugermann, Marcel Dekker Inc., (1991) Glycerin, Key rosmetic ingredient by Eric Jugermann, Marcel Dekker Inc., (1991) Treferen ce Treatise on fats, fatty acids and oleochemicals by O. P. Narula, Industrial Consultants (India), Vo. I & II (1994) Recent advances in chemistry and technology of fats and oils by R. J. Hamilton, Elsevier Applied Science (1987) Antural fatty acids and their sources by E. H. Pryde Tatty Acids by Markley K. S. Vol. I to IV, Robert E. Krieger publishing Co. (1973) Fatty Acids by Markley K. S. Vol. S. Mani and A. D. Shitole, Oxford and IBH Publishing Co. Pvt. Ltd. (1997) Manufacture of soaps, other detergents and glycerin by E. Woollatt, John Wiley and Sons (1985) Outcom es CO Able to understand the basic process of manufacture of different oleochemicals			Technology of drying oils and resins				6
Manufacture and utilization of nitrogen, phosphorqus and sulfate containing products Applications of oleochemicals in food, pharmaceutical, textile, plastic, leather and other industries Glycerin, Key cosmetic ingredient by Eric Jugermann, Marcel Dekker Inc., (1991) Treatise on fats, fatty acids and oleochemicals by O. P. Narula, Industrial Consultants (India), Vo. I & II (1994) Recent advances in chemistry and technology of fats and oils by R. J. Hamilton, Elsevier Applied Science (1987) Natural fatty acids and their sources by E. H. Pryde Tatty Acids by Markley K. S. Vol. I to IV, Robert E. Krieger publishing Co. (1973) Fatty Acids in industry by R. W. Johnson, Marcel Dekker Inc (1989) Tatty Acids in industry by R. W. Johnson, Marcel Dekker Inc (1989) Tatty Acids in industry by V. V. S. Mani and A. D. Shitoble, Oxford and IBH Publishing Co. Pvt. Ltd. (1997) Manufacture of soaps, other detergents and glycerin by E. Woollatt, John Wiley and Sons (1985) Outcom es CO Able to understand the basic process of manufacture of different oleochemicals		-	glyceride route, solvent process, fusion process, classification of alkyd resins according to oil length (short/ medium/ long oil), choice of polybasic acid, etc.	-			
pharmaceutical, textile, plastic, leather and other industries Suggest ed books/ referen ce 2 Treatise on fats, fatty acids and oleochenicals by O. P. Narula, Industrial Consultants (India), Vo. I & II (1994) 3 Recent advances in chemistry and technology of fats and oils by R. J. Harviton, Elsevier Applied Science (1987) 4 Natural fatty acids and their sources by E. H. Pryde 5 Fatty Acids by Markley K. S. Vol. I to IV, Robert E. Krieger publishing Co. (1973) 6 Fatty acids in industry by R. W. Johnson, Marcel Dekker Inc. (1989) 7 Fats, Oleochemicals and surfactants challenges in 21st Century by V. V. S. Mani and A. D. Shitole, Oxford and IBH Publishing Co. Pvt. Ltd. (1997) 8 Manufacture of soaps, other detergents and glycerin by E. Woollatt, John Wiley and Sons (1985) Outcom es CO Able to understand the basic process of manufacture of different oleochemicals			Manufacture and utilization of nitrogen, phosphorous and sulfate containing products	-			6
Suggest ed books/ referen ce 2		6	pharmaceutical, textile, plastic, leather and other	-			6
Jugermann, Marcel Dekker Inc., (1991) Jugermann, Marcel Dekker Inc., (1991) Treatise on fats, fatty acids and oleochen icals by O. P. Narula, Industrial Consultants (India), Vo. I & II (1994) Recent advances in chemistry and technology of fats and oils by R. J. Hamilton, Elsevier Applied Science (1987) A Natural fatty acids and their sources by E. H. Pryde Fatty Acids by Markley K. S. Vol. I to IV, Robert E. Krieger publishing Co. (1973) Fatty acids in industry by R. W. Johnson, Marcel Dekker Inc. (1989) Tatty acids in industry by V. V. S. Mani and A. D. Shitole, Oxford and IBH Publishing Co. Pvt. Ltd. (1997) Manufacture of soaps, other detergents and glycerin by E. Woollatt, John Wiley and Sons (1985) Outcom es CO Able to understand the basic process of manufacture of different oleochemicals			,0	24	12	0	36
oleochenicals by O. P. Narula, Industrial Consultants (India), Vo. I & II (1994) Recent: advances in chemistry and technology of fats and oils by R. J. Hamilton, Elsevier Applied Science (1987) Natural fatty acids and their sources by E. H. Pryde Fatty Acids by Markley K. S. Vol. I to IV, Robert E. Krieger publishing Co. (1973) Fatty acids in industry by R. W. Johnson, Marcel Dekker Inc. (1989) Tats, Oleochemicals and surfactants challenges in 21st Century by V. V. S. Mani and A. D. Shitole, Oxford and IBH Publishing Co. Pvt. Ltd. (1997) Manufacture of soaps, other detergents and glycerin by E. Woollatt, John Wiley and Sons (1985) Outcomes CO Able to understand the basic process of manufacture of different oleochemicals	ed books/ referen	1					
Recent advances in chemistry and technology of fats and oils by R. J. Harniton, Elsevier Applied Science (1987) 4 Natural fatty acids and their sources by E. H. Pryde 5 Fatty Acids by Markley K. S. Vol. I to IV, Robert E. Krieger publishing Co. (1973) 6 Fatty acids in industry by R. W. Johnson, Marcel Dekker Inc. (1989) 7 Fats, Oleochemicals and surfactants challenges in 21st Century by V. V. S. Mani and A. D. Shitole, Oxford and IBH Publishing Co. Pvt. Ltd. (1997) 8 Manufacture of soaps, other detergents and glycerin by E. Woollatt, John Wiley and Sons (1985) Outcom es CO Able to understand the basic process of manufacture of different oleochemicals		2	oleochen icals by O. P. Narula, Industrial				
H. Pryde Fatty Acids by Markley K. S. Vol. I to IV, Robert E. Krieger publishing Co. (1973) Fatty acids in industry by R. W. Johnson, Marcel Dekker Inc. (1989) Fats, Oleochemicals and surfactants challenges in 21st Century by V. V. S. Mani and A. D. Shitole, Oxford and IBH Publishing Co. Pvt. Ltd. (1997) Manufacture of soaps, other detergents and glycerin by E. Woollatt, John Wiley and Sons (1985) Outcom es CO Able to understand the basic process of manufacture of different oleochemicals			Recent advances in chemistry and technology of fats and oils by R. J. Harrilton, Elsevier Applied Science (1987)				
Robert E. Krieger publishing Co. (1973) 6 Fatty acids in industry by R. W. Johnson, Marcel Dekker Inc. (1989) 7 Fats, Oleochemicals and surfactants challenges in 21st Century by V. V. S. Mani and A. D. Shitole, Oxford and IBH Publishing Co. Pvt. Ltd. (1997) 8 Manufacture of soaps, other detergents and glycerin by E. Woollatt, John Wiley and Sons (1985) Outcom es CO 1 Able to understand the basic process of manufacture of different oleochemicals			H. Pryde				
Marcel Dekker Inc. (1989) 7 Fats, Oleochemicals and surfactants challenges in 21st Century by V. V. S. Mani and A. D. Shitole, Oxford and IBH Publishing Co. Pvt. Ltd. (1997) 8 Manufacture of soaps, other detergents and glycerin by E. Woollatt, John Wiley and Sons (1985) Outcom es CO Able to understand the basic process of manufacture of different oleochemicals			Robert E. Krieger publishing Co. (1973)				
challenges in 21st Century by V. V. S. Mani and A. D. Shitole, Oxford and IBH Publishing Co. Pvt. Ltd. (1997) 8 Manufacture of soaps, other detergents and glycerin by E. Woollatt, John Wiley and Sons (1985) Outcom es CO Able to understand the basic process of manufacture of different oleochemicals			Marcel Dekker Inc. (1989)				
and glycerin by E. Woollatt, John Wiley and Sons (1985) Outcom es CO 1 Able to understand the basic process of manufacture of different oleochemicals		-	challenges in 21st Century by V. V. S. Mani and A. D. Shitole, Oxford and IBH Publishing Co. Pvt. Ltd. (1997)				
CO Able to understand the basic process of manufacture of different oleochemicals		8	and glycerin by E. Woollatt, John Wiley				
1 manufacture of different oleochemicals		1					
(NZ)							

		1 1					
	co		Select appropriate process for the				
	2		manufacture of oleochemicals (K4) Summarise about advance method of				
	CO 3		analysis of oleochemicals. (K3)				
	CO		Select Specific method for the				
	4		identification of particular oleochemical				
	_		and understand its properties. (K4)				
			and anderstand its properties (itt)	L	Т	Р	Tota
			<u> </u>				I
Course			SLP4401				
code			Ov				
Course title			Lipids Laboratory-I				
Scheme			0L:0T: 4P 2 credits	0	0	4	2
and Credits			20				
Pre- requisit es			4				
Descript			This course will introduce the student to				
ion of			analytical techniques used for lipid				
the			characterization, common lipid				
Course			transformations, soaps, detergent synthesis, etc.				
Objectiv	1		Students will understand and interpret				
es of			the analytical numbers in testing of oils				
the			and fatty acids adulteration of oils				
course			`				
			2. Apply and infer the physical and				
			chemical testing of oils, fatty acids and oleochemicals				
Syllabus	1		Analysis of Oils and Fats: Acid value,			24	24
Synabas	_		lodine value, Saponification value,				
			Hydroxyl value, Peroxide value, anisideine				
			value, Soap stock analysis/unsap matter,				
			Ash content				
	2		Determination of physical and chemical			12	12
			characteristics of Vanaspati, margarine, ghee and waxes				
	3		To detect castor oil and soyabean oil			12	12
			mixture using TLC, Detection of				
			adulteration oils/ Identification of Oils in				
			mixture				
	4		Acid Oii analysis: FAME-GC analysis				
	5		Analysis of Butter: Salt content, TFM, MP				
Cummant	-	1	Policyle Industrial Oil and Est Destinate	0	0	48	48
Suggest ed	1		Bailey's Industrial Oil and Fat Products, Sixth Edition Vol. 1:Edible Oil and Fat				
books/			Products:Chemistry, Properties, and				
referen			Health Effects, Ed. Fereidoon Shahidi, John				
ce			Wiley & Sons, Inc., Wiley Interscien				
	2	0	Fatty Acids by Robert Johnson				
	3	7,	Fats and Oils Handbook by Bockisch				
	4	.0"	Michael The Chemistry of Oils and Fats: Sources,				
	4	~	Composition, Properties and Uses – Frank				
		O.	D. Gunstone, Blackwell Publishing Ltd,				
	5	0,	Manual of methods of analysis of foods				
	*	700	(oils & fats) -FSSAI Handbook (2015)				
Outcom		V	On completion of the course, the students				
es	66		will be able to				
	CO 1		Analyze and evaluate physical				
	_		characteristics of oils like specific gravity, refractive index, color, viscosity etc. (K4)				
			remactive mack, color, viscosity etc. (N4)				

4 \	2	Michael The Chemistry of Oils and Fats: Sources, Composition, Properties and Uses - Frank D. Gunstone, Blackwell Publishing Ltd, Manual of methods of analysis of foods (oils & fats) -FSSAI Handbook (2015)				
1	, C	The Chemistry of Oils and Fats: Sources, Composition, Properties and Uses – Frank D. Gunstone, Blackwell Publishing Ltd,				
4	2	The Chemistry of Oils and Fats: Sources, Composition, Properties and Uses - Frank				
4 🖔	N.	The Chemistry of Oils and Fats: Sources,				
_	Q					
-	(3.3					
3	Q					
2	~					
	,0					
	7					
	.0	Sixth Edition Vol. 1:Edible Oil and Fat				
1		Bailey's Industrial Oil and Fat Products,				
		7.4				
		2.2 and the analysis asing the Le	0	0	0	0
10						
8		Analysis of Detergents: Foaming, wetting				
7		Splitting of Purified Wax				
		Crystallization process, oil content				
6		Wax processing and analysis:				
3						
5	-	Pouble Solvent Extractions oil extraction				
4						
		seeds				
3		Hydraulic Expelling: oil extraction from oil				
		seeds				
2						
-		A				U
1		Solvent Extraction; oil extraction from oil				0
4						
		,				
2		V				
		()				
		<u> </u>				
-		, 0				
1		A)				
		^)				
		V				
		Surfactants and Detergents				
		Production and Applications of Soaps,				
		Lipid Lab 1. Lipid Processing Technology I				
		0				
		UL:U1: 4P 2 credits	U	U	4	2
		N 07 10				
		Lipids Laboratory II				
		0.				
		SLP4402				•
			L	•		Tota
3		or oils and fatty acids, adulteration of oils		-	-	7-1-
		oxirane value, amine value etc. (K5)				
_		iodine value, oxidation, crystallization,				
2						
	1 2 3 4 1 2 3 4 5 6 7 8 9 10	2 CO 3	oleochemicals like acid value, sap value, iodine value, amine value ett. (K5) Interpret the analytical numbers in testing of oils and fatty acids, adulteration of oils SLP4402 Lipids Laboratory II OL:OT: 4P 2 credits Lipid Lab 1, Lipid Processing Technology I, Production and Applications of Soaps, Surfactants and Detergents 1 Solvent Extraction: oil extraction from oil seeds 2 Aqueous Extraction: oil extraction from oil seeds 3 Hydraulic Expelling: oil extraction from oil seeds 4 Refining Of Crude Edible Oil: physical/chenical refining of oils 5 Double Solvent Extraction: oil extraction from oil seeds 6 Wax processing and analysis: Crystallization process, oil content Splitting of Purified Wax 8 Analysis of Detergents: Foaming, wetting test, surface tension, active matter 9 Analysis of Soap: TFM, Glycerol Content Splitting of vegetable oils to get MAG, DAG FA and the analysis using HPLC 1 Bailey's Industrial Oil and Fat Products, Sixth Edition Vol. 1:Edible Oil and Fat Products: Chemistry, Properties, and Health Effects, Ed. Fereidoon Shahidi, John Wiley & Sons, Inc., Wiley Interscien Fatty Acids by Robert Johnson Fats and Oils Handbook by Bockisch	oleochemicals like acid value, sap value, iodine value, oxidation, crystallization, oxirane value, amine value etc. (KS) Interpret the analytical numbers in testing of oils and fatty acids, adulteration of oils L SLP4402 Lipids Laboratory II OL:0T: 4P 2 credits Oution and Applications of Soaps, Surfactants and Detergents Lipid Lab 1, Lipid Processing Technology I, Production and Applications of Soaps, Surfactants and Detergents Solvent Extraction: oil extraction from oil seeds Aqueous Extraction: oil extraction from oil seeds Hydraulic Expelling: oil extraction from oil seeds Refining Of Crude Edible Oil: physical/che-nical refining of oils Double Solvent Extraction: oil extraction from oil seeds Wax processing and analysis: Crystallization process, oil content Splitting of Purified Wax Analysis of Detergents: Foaming, wetting test, surface tension, active matter Analysis of Soap: TFM, Glycerol Content Splitting of vegetable oils to get MAG, DAG FA and the analysis using HPLC Dailey's Industrial Oil and Fat Products, Sixth Edition Vol. 1:Edible Oil and Fat Produ	oleochemicals like acid value, sap value, iodine value, oxidation, crystallization, oxirane value, amine value etc. (K5) Interpret the analytical numbers in testing of oils and fatty acids, adulteration of oils SLP4402	Delechemicals like acid value, sap value, iodine value, oxidation, crystallization, oxirane value, amine value etc. (K5) October 1 October 2 October 3 October 2 October 3 O

Outcom es				
	CO 1			
	CO 2			
	CO 3			

Foods

SP #	Course Code (IOCB)	Course Code (MARJ)	Туре	List of Subjects
1	SFT320 2	SFT420 2	Theory	Introduction to Food Technology
2	SFT330 1	SFT430 1	Theory	Biochemistry/Microbiology
3	SFT340 3	SFT440 3	Theory	Food Chemistry
4	SFT340 4	SFT440 4	Theory	Food Processing and Technology I
5	SFT340 5	SFT440 5	Theory	Food Ingredients and Additives
6	SFT350 6	SFT450 6	Theory	Foco Processing and Technology II
7	SFT350 7	SFT450 7	Theory	Food Packaging Science and Technology
1	SFP330 2	SFP430 2	Laborator y	Food Analysis Laboratory
2	SFP340 2	SFP440 2	Laborator y	Food Processing Laboratory

Course code		SFT4302				
Course title		Introduction to Food Technology				
Scheme and Credits		2L: 1T: 0P 3 credits	2	1	0	3
Pre- requisites		Introduction to Biological Sciences and Bioengineering (BST 4202), Biochemistry & Microbiology (SFT 4201)				
Objectives of the course	1	Understand the significance food science, technology and processing				
	2	Understand reasons for food spoilage and methods of food preservation used for various food systems especially for perishable foods such as dairy, fruit vegetable, poultry etc.				
	3	Understand chemistry of food constituents, additives, functional properties and importance of product attributes in sensory evaluation of foods				
Syllabus	1	Introduction to basic concepts of physical and microbial food spoilage. Principles of food preservation, strategies to preserve food by thermal (blanching, canning, pasteurization, sterilization), chemical preservation, water activity reduction.	6	3		9
	2 (Food preservation by irradiation, fermentation, Hurdle technology: principle, methods and equipments used. Examples from perishable foods - fruits vegetables, meat -poultry etc.	4	2		6
	3	Chemistry of food constituents such as carbohydrates, proteins, lipids. Other food additives such as gums, emulsifiers to impart desired texture and functional properties to processed food. Basic information on sensory evaluation of food.	6	3		9

	4		Some important methods of food processing and other unit operations such as size reduction, retorting, extrusion, baking, frying, membrane concentration. Some examples from Indian traditional foods will be illustrated from various commodity eg. Shrikhand, Chapati, pickles, bhujiya and mithai.	8	4		12
			Λ.	24	12	0	36
Suggested books/ reference	1		Food Processing Technology by P. Fellows				
	2		Food Science by N. Potter				
	3		Food chemistry by Meyer				
	4		Handbook of Food Engineering by R.P. Singh and Heldman				
Outcomes			On completion of the course, the students will be able to				
	CO1		Gain the ability to perform the root				
			cause analysis of any food spoilage				
	CO2		Ability to develop the strategies to				
			preserve the food products Understand the constituents of food and				
	соз		their functional role in quality of the				
	005		food product.				
			Extrapolate the knowledge gained about				
	CO4		unit operations in developing the				
	C04		processing operations for various food				
			products.				
			~~~	•	_		
Course			<u> </u>	L	Т	Р	Total
Course code			SFT 4201	L	l	Р	iotai
			SFT 4201 Biochemistry/Microbiology	L	I	Р	iotai
code Course title Scheme			Biochemistry/Microbiology		-	-	
Course title Scheme and Credits			Biochemistry/Microbiology  2L: 1T: 0P 3 credits	2	1	0	3
Course title Scheme and Credits Pre-			Biochemistry/Microbiology  2L: 1T: 0P 3 credits  Introduction to Biological Sciences and		-	-	
code Course title Scheme and Credits			Biochemistry/Microbiology  2L: 1T: 0P 3 credits  Introduction to Biological Sciences and Bioengineering (BST 4202)		-	-	
Course title Scheme and Credits Pre-	1		Biochemistry/Microbiology  2L: 1T: OP 3 credits  Introduction to Biological Sciences and Bioengineering (BST 4202)  Understand the significance of Biochemistry and Microbiology in Food technology, pharmaceutical sciences and lipids		-	-	
code Course title Scheme and Credits Pre- requisites Objectives of the	1 2		Biochemistry/Microbiology  2L: 1T: OP 3 credits  Introduction to Biological Sciences and Bioengineering (BST 4202)  Understand the significance of Biochemistry and Microbiology in Food technology, pharmaceutical sciences and lipids  Able to connect biological pathways to digestion and drug action.		-	-	
code Course title Scheme and Credits Pre- requisites Objectives of the			Biochemistry/Microbiology  2L: 1T: OP 3 credits  Introduction to Biological Sciences and Bioengineering (BST 4202)  Understand the significance of Biochemistry and Microbiology in Food technology, pharmaceutical sciences and lipids  Able to connect biological pathways to digestion and drug action.  Understand and apply the principles of		-	-	
code Course title Scheme and Credits Pre- requisites Objectives of the	2		Biochemistry/Microbiology  2L: 1T: OP 3 credits  Introduction to Biological Sciences and Bioengineering (BST 4202)  Understand the significance of Biochemistry and Microbiology in Food technology, pharmaceutical sciences and lipids  Able to connect biological pathways to digestion and drug action.  Understand and apply the principles of enzymes to human system.		-	-	
Code Course title Scheme and Credits Pre- requisites Objectives of the	2		Biochemistry/Microbiology  2L: 1T: OP 3 credits  Introduction to Biological Sciences and Bioengineering (BST 4202)  Understand the significance of Biochemistry and Microbiology in Food technology, pharmaceutical sciences and lipids  Able to connect biological pathways to digestion and drug action.  Understand and apply the principles of		-	-	
Code Course title Scheme and Credits Pre- requisites Objectives of the	2		Biochemistry/Microbiology  2L: 1T: 0P 3 credits  Introduction to Biological Sciences and Bioengineering (BST 4202)  Understand the significance of Biochemistry and Microbiology in Food technology, pharmaceutical sciences and lipids  Able to connect biological pathways to digestion and drug action.  Understand and apply the principles of enzymes to human system.  Know and explain morphology, diversity, cultivation methods, physiology and metabolism of microorganisms		-	-	
Code Course title Scheme and Credits Pre- requisites Objectives of the	2 3 4	3	Biochemistry/Microbiology  2L: 1T: 0P 3 credits  Introduction to Biological Sciences and Bioengineering (BST 4202)  Understand the significance of Biochemistry and Microbiology in Food technology, pharmaceutical sciences and lipids  Able to connect biological pathways to digestion and drug action.  Understand and apply the principles of enzymes to human system.  Know and explain morphology, diversity, cultivation methods, physiology and metabolism of microorganisms  Apply microscopy and staining		-	-	
Code Course title Scheme and Credits Pre- requisites Objectives of the	2	60%	Biochemistry/Microbiology  2L: 1T: OP 3 credits  Introduction to Biological Sciences and Bioengineering (BST 4202)  Understand the significance of Biochemistry and Microbiology in Food technology, pharmaceutical sciences and lipids  Able to connect biological pathways to digestion and drug action.  Understand and apply the principles of enzymes to human system.  Know and explain morphology, diversity, cultivation methods, physiology and metabolism of microorganisms  Apply microscopy and staining techniques to study and differentiate		-	-	
Code Course title Scheme and Credits Pre- requisites Objectives of the	2 3 4	600	Biochemistry/Microbiology  2L: 1T: 0P 3 credits  Introduction to Biological Sciences and Bioengineering (BST 4202)  Understand the significance of Biochemistry and Microbiology in Food technology, pharmaceutical sciences and lipids  Able to connect biological pathways to digestion and drug action.  Understand and apply the principles of enzymes to human system.  Know and explain morphology, diversity, cultivation methods, physiology and metabolism of microorganisms  Apply microscopy and staining		-	-	
code Course title Scheme and Credits Pre- requisites Objectives of the course	2 3 4 5	, COV.	Biochemistry/Microbiology  2L: 1T: OP 3 credits  Introduction to Biological Sciences and Bioengineering (BST 4202)  Understand the significance of Biochemistry and Microbiology in Food technology, pharmaceutical sciences and lipids  Able to connect biological pathways to digestion and drug action.  Understand and apply the principles of enzymes to human system.  Know and explain morphology, diversity, cultivation methods, physiology and metabolism of microorganisms  Apply microscopy and staining techniques to study and differentiate different microorganisms	2	1	-	3
code Course title Scheme and Credits Pre- requisites Objectives of the	2 3 4	Leo's.	Biochemistry/Microbiology  2L: 1T: OP 3 credits  Introduction to Biological Sciences and Bioengineering (BST 4202)  Understand the significance of Biochemistry and Microbiology in Food technology, pharmaceutical sciences and lipids  Able to connect biological pathways to digestion and drug action.  Understand and apply the principles of enzymes to human system.  Know and explain morphology, diversity, cultivation methods, physiology and metabolism of microorganisms  Apply microscopy and staining techniques to study and differentiate		-	-	
code Course title Scheme and Credits Pre- requisites Objectives of the course	2 3 4 5	Leo's.	Biochemistry/Microbiology  2L: 1T: OP 3 credits  Introduction to Biological Sciences and Bioengineering (BST 4202)  Understand the significance of Biochemistry and Microbiology in Food technology, pharmaceutical sciences and lipids  Able to connect biological pathways to digestion and drug action.  Understand and apply the principles of enzymes to human system.  Know and explain morphology, diversity, cultivation methods, physiology and metabolism of microorganisms  Apply microscopy and staining techniques to study and differentiate different microorganisms  Prelude: Introduction to basic concepts of biochemistry and microbiology  Human digestion and absorption-	2	1		3
code Course title Scheme and Credits Pre- requisites Objectives of the course	2 3 4 5	Leon.	Biochemistry/Microbiology  2L: 1T: OP 3 credits  Introduction to Biological Sciences and Bioengineering (BST 4202)  Understand the significance of Biochemistry and Microbiology in Food technology, pharmaceutical sciences and lipids  Able to connect biological pathways to digestion and drug action.  Understand and apply the principles of enzymes to human system.  Know and explain morphology, diversity, cultivation methods, physiology and metabolism of microorganisms  Apply microscopy and staining techniques to study and differentiate different microorganisms  Prelude: Introduction to basic concepts of biochemistry and microbiology  Human digestion and absorption-metabolic pathways and energy yield for	2	1		3
code Course title Scheme and Credits Pre- requisites Objectives of the course	2 3 4 5	7007	Biochemistry/Microbiology  2L: 1T: OP 3 credits  Introduction to Biological Sciences and Bioengineering (BST 4202)  Understand the significance of Biochemistry and Microbiology in Food technology, pharmaceutical sciences and lipids  Able to connect biological pathways to digestion and drug action.  Understand and apply the principles of enzymes to human system.  Know and explain morphology, diversity, cultivation methods, physiology and metabolism of microorganisms  Apply microscopy and staining techniques to study and differentiate different microorganisms  Prelude: Introduction to basic concepts of biochemistry and microbiology  Human digestion and absorption-metabolic pathways and energy yield for breakdown of carbohydrates; electron	2	1		3
code Course title Scheme and Credits Pre- requisites Objectives of the course	2 3 4 5	, COV.	Biochemistry/Microbiology  2L: 1T: OP 3 credits  Introduction to Biological Sciences and Bioengineering (BST 4202)  Understand the significance of Biochemistry and Microbiology in Food technology, pharmaceutical sciences and lipids  Able to connect biological pathways to digestion and drug action.  Understand and apply the principles of enzymes to human system.  Know and explain morphology, diversity, cultivation methods, physiology and metabolism of microorganisms  Apply microscopy and staining techniques to study and differentiate different microorganisms  Prelude: Introduction to basic concepts of biochemistry and microbiology  Human digestion and absorption-metabolic pathways and energy yield for breakdown of carbohydrates; electron transport chain and coupled oxidative	2	1		3
code Course title Scheme and Credits Pre- requisites Objectives of the course	2 3 4 5	Leon.	Biochemistry/Microbiology  2L: 1T: OP 3 credits  Introduction to Biological Sciences and Bioengineering (BST 4202)  Understand the significance of Biochemistry and Microbiology in Food technology, pharmaceutical sciences and lipids  Able to connect biological pathways to digestion and drug action.  Understand and apply the principles of enzymes to human system.  Know and explain morphology, diversity, cultivation methods, physiology and metabolism of microorganisms  Apply microscopy and staining techniques to study and differentiate different microorganisms  Prelude: Introduction to basic concepts of biochemistry and microbiology  Human digestion and absorption-metabolic pathways and energy yield for breakdown of carbohydrates; electron transport chain and coupled oxidative phosphorylation; Pathways for	2	1		3
code Course title Scheme and Credits Pre- requisites Objectives of the course	2 3 4 5	Cook.	Biochemistry/Microbiology  2L: 1T: OP 3 credits  Introduction to Biological Sciences and Bioengineering (BST 4202)  Understand the significance of Biochemistry and Microbiology in Food technology, pharmaceutical sciences and lipids  Able to connect biological pathways to digestion and drug action.  Understand and apply the principles of enzymes to human system.  Know and explain morphology, diversity, cultivation methods, physiology and metabolism of microorganisms  Apply microscopy and staining techniques to study and differentiate different microorganisms  Prelude: Introduction to basic concepts of biochemistry and microbiology  Human digestion and absorption-metabolic pathways and energy yield for breakdown of carbohydrates; electron transport chain and coupled oxidative phosphorylation; Pathways for breakdown and synthesis of fatty acids	2	1		3
Code Course title Scheme and Credits Pre- requisites Objectives of the course	2 3 4 5	Leon.	Biochemistry/Microbiology  2L: 1T: OP 3 credits  Introduction to Biological Sciences and Bioengineering (BST 4202)  Understand the significance of Biochemistry and Microbiology in Food technology, pharmaceutical sciences and lipids  Able to connect biological pathways to digestion and drug action.  Understand and apply the principles of enzymes to human system.  Know and explain morphology, diversity, cultivation methods, physiology and metabolism of microorganisms  Apply microscopy and staining techniques to study and differentiate different microorganisms  Prelude: Introduction to basic concepts of biochemistry and microbiology  Human digestion and absorption-metabolic pathways and energy yield for breakdown of carbohydrates; electron transport chain and coupled oxidative phosphorylation; Pathways for	2	1		3

of hormones and their role Enzymes definition, structure, function, nomenclature, classification, mechanism of action, specificity; Enzyme kinetics with focus on human digestive enzymes; Enzymatic spoilage of foods and oils (case studies). Enzyme activity regulation (competitive, non competitye inhibition); regulation of enzyme synthesis (repression, induction); enzyme activity assay  Microorganisms: Major groups of microorganisms; pathogenic/ toxigenic and spoilage organisms, beneficial organisms used in industrial fermentations and food fermentations; The human gut microbiota and Prebiotics, Probotics: Grayth curve: Physical and chemical feators affecting growth and destruction of microbes; Cultivation of microbes; Cultivation of microbes in lab, types of media, enumeration techniques and identification techniques; classical and rapid microbiological analysis methods  Suggested books/ reference  Prescott's Microbiology 11th Edition, Joanne Willey, Katheen Sandman, Donothy Wood; McGraw-Hill Education (2019)  2 Microbiology, Pelczar, McGraw-Hill Education (2019)  3 Stryer, John Vymoczko, Gregory Gatto; WH Freeman; 9th ed. 2019 edition Principles of Biochemistry, Albert L. Lehninger, David L. Nelson, and Michael M. Cox, Wiley  Outcomes  On completion of the course, the students will be able to Undeistand and elucidate structural as well(as metabolic pathway)  Evaluate and explain influence and Interactions of different may omolecules in the cell  CO2 different catalytic reactions involved in retabolic pathway on each other  Know the cultivation/control methods for diversity of microorganisms, their physiology and metabolism			metabolism; Metabolism of drugs; Types				
nomenclature, classification, mechanism of action, specificity: Enzyme kinetics with focus on human digestive enzymes: Enzymatic spoilage of foods and oils (case studies). Enzyme activity regulation (competitive, non competitive inhibition); regulation of enzyme synthesis (repression, induction); enzyme activity assay  Microorganisms: Major grouns of microorganisms: bandgeric toxigenic and spoilage organisms, beneficial organisms used in industrial fermentations and food fermentations; The human gut microbiota and Prebiotics, Probotics; Gruwth curve; Physical and chemical factors affecting growth and destruction of microbes; Cultivation of microbes in lab, types of media, enumeration techniques and identification techniques; classical and rapid microbiological analysis methods  Suggested books/ Prescott's Microbiology 11th Edition, Joanne Willey, Katheen Sandman, Dorothy Wood: McGraw-Hill Education (2019)  Prescott's Microbiology 12th Edition, Joanne Willey, Katheen Sandman, Dorothy Wood: McGraw-Hill Education (2019)  2 Microbiology, Pelczar, McGraw-Hill Education (2019)  Biochemistry, Jeremy M. Berg , Lubert Stryer , John Wimoczko, Gregory Gatto; WH Freeman! 9th ed. 2019 edition  Biochemistry, Jeremy M. Berg , Lubert Stryer , John Wimoczko, Gregory Gatto; WH Freeman! 9th ed. 2019 edition  Principles of Biochemistry, Albert L. Lehninger, David L. Nelson, and Michael M. Cox, Wiey  Outcomes  On completion of the course, the students will be able to understand and elucidate structural as well'es metabolic role of different may omolecules in the cell  Evaluate and elucidate impact of different may omolecules in the cell  Evaluate and explain influence and interactions of different metabolic pathway on each other  Know the cultivation/control methods for diversity of microorganisms, their physiology and metabolism							
Microorganisms- Major groups of microorganisms; pathogenic/ toxigenic and spoilage organisms, beneficial organisms used in industrial fermentations and food fermentations; The human gut microbiota and Prebiotics, Probotics; Growth curve; Physical and chemical factors affecting growth and destruction of microbes; Cultivation of microbes in lab, types of media, enumeration techniques and identification techniques; classical and rapid microbiological analysis methods  Prescott's Microbiology 11th Edition, Joanne Willey, Kathieen Sandman, Dorothy Wood; McGraw-Hill Education (2019)  2 Microbiology, Pelczar, McGraw-Hill Education (2019)  2 Microbiology, Pelczar, McGraw-Hill Education (2019)  3 Biochemistry, Peremy M. Berg , Lubert Stryer , John Tymoczko , Gregory Gatto; WH Freeman; 9th ed. 2019 edition  Principles of Biochemistry, Albert L. Lehninger, David L. Nelson, and Michael M. Cox, Wiley  Outcomes  On completion of the course, the students will be able to Understand and elucidate structural as well as metabolic role of different man-formolecules in the cell  Evaluate and elucidate impact of direrent catalytic reactions involved in netabolic pathway on each other  Know the cultivation/control methods for diversity of microorganisms, their physiology and metabolism  Course  SET 4303		3	nomenclature, classification. mechanism of action, specificity; Enzyme kinetics with focus on human digestive enzymes; Enzymatic spoilage of foods and oils (case studies). Enzyme activity regulation (competitive, non competitive inhibition); regulation of enzyme synthesis (repression, induction);	6	3		9
Prescott's Microbiology 11th Edition, Joanne Willey, Kathreen Sandman, Dorothy Wood; McGraw-Hill Education (2019)		4	Microorganisms- Major groups of microorganisms; pathogenic/ toxigenic and spoilage organisms, beneficial organisms used in industrial fermentations and food fermentations; The human gut microbiota and Prebiotics, Probotics; Growth curve; Physical and chemical factors affecting growth and destruction of microbes; Cultivation of microbes in lab, types of media, enumeration techniques and identification techniques; classical and		-		
Joanne Willey, Kathleen Sandman, Dorothy Wood; McGraw-Hill Education (2019)  Microbiology, Pelczar, McGraw-Hill Education Biochemistry, Jeremy M. Berg , Lubert Stryer , John Tymoczko , Gregory Gatto; WH Freeman; 9th ed. 2019 edition Principles of Biochemistry, Albert L. Lehninger, David L. Nelson, and Michael M. Cox, Wiley  Outcomes On completion of the course, the studens will be able to Undelstand and elucidate structural as wellas metabolic role of different macromolecules in the cell EValuate and elucidate impact of direrent catalytic reactions involved in netabolic pathway  Evaluate and explain influence and interactions of different metabolic pathway on each other Know the cultivation/control methods for diversity of microorganisms, their physiology and metabolism  L T P Total  Course			Proceett's Microbiology 11th Edition	24	12	0	36
Biochemistry, Jeremy M. Berg , Lubert Stryer , John Tymoczko , Gregory Gatto; WH Freemar; 9th ed. 2019 edition  Principles of Biochemistry, Albert L. Lehninger, David L. Nelson, and Michael M. Cox, Wley  On completion of the course, the students will be able to  Understand and elucidate structural as well as metabolic role of different macromolecules in the cell  Evaluate and elucidate impact of different catalytic reactions involved in retabolic pathway  Evaluate and explain influence and interactions of different metabolic pathway on each other  Know the cultivation/control methods for diversity of microorganisms, their physiology and metabolism  L T P Total  Course SET 4303	books/	1	Joanne Willey, Kathleen Sandman, Dorothy Wood; McGraw-Hill Education (2019)				
Stryer , John Tymoczko , Gregory Gatto; WH Freeman: 9th ed. 2019 edition  Principles of Biochemistry, Albert L. Lehninger, David L. Nelson, and Michael M. Cox, Wley  On completion of the course, the students will be able to  Understand and elucidate structural as well as metabolic role of different macromolecules in the cell  Evaluate and elucidate impact of different catalytic reactions involved in relabolic pathway  Evaluate and explain influence and interactions of different metabolic pathway on each other  CO4  Know the cultivation/control methods for diversity of microorganisms, their physiology and metabolism  L T P Total  Course		2	Education				
Outcomes  Outcomes  On completion of the course, the students will be able to  Understand and elucidate structural as well as metabolic role of different macromolecules in the cell  Evaluate and elucidate impact of different catalytic reactions involved in relabolic pathway  Evaluate and explain influence and interactions of different metabolic pathway on each other  Know the cultivation/control methods for diversity of microorganisms, their physiology and metabolism  L T P Total  Course  SET 4303		3	Stryer , John Tymoczko , Gregory Gatto; WH Freeman; 9th ed. 2019 edition				
Students will be able to  Understand and elucidate structural as well as metabolic role of different macromolecules in the cell  Evaluate and elucidate impact of dimerent catalytic reactions involved in metabolic pathway  Evaluate and explain influence and interactions of different metabolic pathway on each other  Know the cultivation/control methods for diversity of microorganisms, their physiology and metabolism  L T P Total  Course  SET 4303		4	Lehninger, David L. Nelson, and Michael				
CO1 well as metabolic role of different macromolecules in the cell  Evaluate and elucidate impact of diverent catalytic reactions involved in metabolic pathway  Evaluate and explain influence and interactions of different metabolic pathway on each other  Know the cultivation/control methods for diversity of microorganisms, their physiology and metabolism  CO4 SET 4303	Outcomes						
CO2 different catalytic reactions involved in metabolic pathway  Evaluate and explain influence and interactions of different metabolic pathway on each other  Know the cultivation/control methods for diversity of microorganisms, their physiology and metabolism  CO4 SET 4303		CO1	well as metabolic role of different macromolecules in the cell				
CO3 interactions of different metabolic pathway on each other  Know the cultivation/control methods for diversity of microorganisms, their physiology and metabolism  L T P Total  Course SET 4303		CO2	different catalytic reactions involved in metabolic pathway				
CO4 diversity of microorganisms, their physiology and metabolism  L T P Total  Course SET 4303		соз	interactions of different metabolic pathway on each other				
Course SFT 4303		CO4	diversity of microorganisms, their				
Course SFT 4303		1	7		_		<b>-</b>
N SEL /13013	Course	4	/	L	T	P	iotal
	code	Ō,					
Course title Food Chemistry Scheme		6,					
and Credits 2 L: 11: 0P 3 credit		Å.					0
Pre- requisites  Basics of organic and inorganic Chemistry, Physical chemistry, Analytical chemistry	requisites		Chemistry, Physical chemistry, Analytical chemistry				
Objectives 1 To understand basic physico-chemical	Objectives	1	To understand basic physico-chemical				

-6 +1		I managetica and about all atmost manage				
of the		properties and chemical structures of				
course		food components				
		To understand the importance and				
	2	mechanisms of the reactions of food				
		components taking place during food				
		processing				
		To understand the significance and				
	3	mechanisms of the reactions of food				
		components taking place storage and				
		spoilage ^ V				
		To think critically on the role of water				
	4	and its various forms in food				
		preservation				
		To understand the role of food				
		constituents responsible for				
	5	nutritional/anti-nutritional, and aesthetic				
		quality of foods (such as texture, flavor,				
		and color)				
	_	To apply course concepts in solving				
	6	problems related to food constituents				
		1				
		Introduction to the constituents of foods:				
Syllabus	1	Water in food systems: Chemistry,		1		3
- , <del></del>	_	properties and food significance		_		
		Carbohydrates: Classification,				
	2	Physicochemical and functional		3		9
	_	properties of carbohydrates				
		Proteins: Classification, Physicochemical				
	3	and functional properties	4	2		6
		Lipids: Classification, Physicochemical				
	4	and functional properties	3	2		
		Minerals: Classification, Physicochemical				
	5	and functional properties	3	1		4
		Vitamins: Classification,				
	6	Physicochemical and functional		1		4
	0	properties	3			4
	7	Contaminants, Toxicants, and anti- nutritional compounds in food systems	3	2		5
		Hatritional compounds in rood systems	24	12	0	36
Cuggostod		Food Cnemistry – Belitz H.D, Grosch W,		12	U	30
Suggested	-	rood Chemistry - Bentz H.D., Grosch W.				
Reference	1	and Schieberle. P.3 rd Edn. Springer Berlin				
Books		/ Heigelberg				
	2	Food Chemistry- Fennema O.R 2 nd Edn.,				
		Marcel Dekker, New york. (1985)				
	_	Fcod Chemistry- Aurand L.W and Woods				
	3	A.E., Avi Publishing Company, Inc.,				
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
		Westport, CT (1973).				
	4	Sugar Chemistry- Shallenberger, R. S.				
	4	Sugar Chemistry- Shallenberger, R. S. and Birch, G. G. AVI Publishing Co., Inc.				
	4	Sugar Chemistry- Shallenberger, R. S. and Birch, G. G. AVI Publishing Co., Inc. Food Chemistry. Meyer. Cbs Publisher.				
	-	Sugar Chemistry- Shallenberger, R. S. and Birch, G. G. AVI Publishing Co., Inc.				
Outcomes	-	Sugar Chemistry- Shallenberger, R. S. and Birch, G. G. AVI Publishing Co., Inc. Food Chemistry. Meyer. Cbs Publisher. (2004)				
Outcomes	5	Sugar Chemistry- Shallenberger, R. S. and Birch, G. G. AVI Publishing Co., Inc. Food Chemistry. Meyer. Cbs Publisher. (2004)  Describe the various constituents				
Outcomes	-	Sugar Chemistry- Shallenberger, R. S. and Birch, G. G. AVI Publishing Co., Inc. Food Chemistry. Meyer. Cbs Publisher. (2004)  Describe the various constituents present in foods and their roles therein				
Outcomes	5	Sugar Chemistry- Shallenberger, R. S. and Birch, G. G. AVI Publishing Co., Inc. Food Chemistry. Meyer. Cbs Publisher. (2004)  Describe the various constituents present in foods and their roles therein Describe the mechanisms and				
Outcomes	5 CO1	Sugar Chemistry- Shallenberger, R. S. and Birch, G. G. AVI Publishing Co., Inc. Food Chemistry. Meyer. Cbs Publisher. (2004)  Describe the various constituents present in foods and their roles therein Describe the mechanisms and significance of physicochemical				
Outcomes	5	Sugar Chemistry- Shallenberger, R. S. and Birch, G. G. AVI Publishing Co., Inc. Food Chemistry. Meyer. Cbs Publisher. (2004)  Describe the various constituents present in foods and their roles therein Describe the mechanisms and significance of physicochemical reactions involved in food processing				
Outcomes	5 CO1	Sugar Chemistry- Shallenberger, R. S. and Birch, G. G. AVI Publishing Co., Inc. Food Chemistry. Meyer. Cbs Publisher. (2004)  Describe the various constituents present in foods and their roles therein Describe the mechanisms and significance of physicochemical reactions involved in food processing and subsequent storage				
Outcomes	5 CO1 CO2	Sugar Chemistry- Shallenberger, R. S. and Birch, G. G. AVI Publishing Co., Inc. Food Chemistry. Meyer. Cbs Publisher. (2004)  Describe the various constituents present in foods and their roles therein Describe the mechanisms and significance of physicochemical reactions involved in food processing and subsequent storage Describe the mechanisms and				
Outcomes	5 CO1	Sugar Chemistry- Shallenberger, R. S. and Birch, G. G. AVI Publishing Co., Inc. Food Chemistry. Meyer. Cbs Publisher. (2004)  Describe the various constituents present in foods and their roles therein Describe the mechanisms and significance of physicochemical reactions involved in food processing and subsequent storage  Describe the mechanisms and significance of physicochemical				
Outcomes	5 CO1 CO2	Sugar Chemistry- Shallenberger, R. S. and Birch, G. G. AVI Publishing Co., Inc. Food Chemistry. Meyer. Cbs Publisher. (2004)  Describe the various constituents present in foods and their roles therein Describe the mechanisms and significance of physicochemical reactions involved in food processing and subsequent storage  Describe the mechanisms and significance of physicochemical reactions involved in spoilage of foods				
Outcomes	5 CO1 CO2	Sugar Chemistry- Shallenberger, R. S. and Birch, G. G. AVI Publishing Co., Inc. Food Chemistry. Meyer. Cbs Publisher. (2004)  Describe the various constituents present in foods and their roles therein Describe the mechanisms and significance of physicochemical reactions involved in food processing and subsequent storage  Describe the mechanisms and significance of physicochemical reactions involved in spoilage of foods Explain the significance of water in food				
Outcomes	5 CO1 CO2	Sugar Chemistry- Shallenberger, R. S. and Birch, G. G. AVI Publishing Co., Inc. Food Chemistry. Meyer. Cbs Publisher. (2004)  Describe the various constituents present in foods and their roles therein Describe the mechanisms and significance of physicochemical reactions involved in food processing and subsequent storage  Describe the mechanisms and significance of physicochemical reactions involved in spoilage of foods				

	1						
			food constituents on nutritional/anti- nutritional and aesthetic quality of raw and processed foods				
			Extrapolate the knowledge gained on				
	CO6		food composition to practical problems in food quality				
			^	L	Т	Р	Total
Course code			SFT4405				
Course title			Food Processing and Technology I				
Scheme and Credits			2L: 1T: 0P 3 credits	2	1	0	3
Pre- requisites			Introduction to Food Technology				
Objectives of the course	1		To understand principles of food processing and preservation				
	2		To acquaint post-harvest technology of fruits and vegetables				
	3		To analyse various processing methods involved in plantation crops				
	4		To understand post-slaughter processing of meat and poultry products				
	5		To learn different commercial processing techniques for value addition				
Syllabus	1		Principles of food processing and preservation; unit operations in food processing (mechanical separation processes, food conversion operations, material handling etc.)	4	2		6
	2		Technology of fruits and vegetables processing: Current scenario of production of fruits and vegetables; post-harvest technology; minimal processing; commercial canning of fruits and vegetables; processing and preservation of fruit beverages; processing of fruit preserves; commercial processing technology for value addition.	8	4		12
	3	.6.	Technology of plantation crops, herbs and spices processing: Processing of minor and major spices; extraction of spice oil and oleoresins; post-harvest processing of plantation crops; processing of medicinal and tuber crops; by-products of plantation crops and spices.	6	3		9
	4	00/10	Technology of meat, fish, poultry and egg processing: Meat processing operations; egg processing and preservation; processing of fish and marine products; by-products of meat, poultry and egg and their waste utilization.	6	3		9
	0,			24	12	0	36
	Day						
Suggested books/ reference	1		Post-Harvest Technology of Fruits and Vegetables: Handling, Processing, Fermentation and Waste Management by Verma LR and Joshi VK				
	2		Introduction to Spices, Planation Crops,				
L							

		Medicinal and Aromatic Plants by N.				
		Kumar and Abdul Khader				
	3	Meat, Egg and Poultry Science and Technology by Vikas Nanda				
		lectifiology by vikas Nafida				
		On completion of the course, the	:			
Outcomes		students will be able to				
	CO1	Understand the basic knowledge of food				
	COI	processing and value addition				
	CO2	Asses various aspects of post-harvesting				
		operations				
	CO3	Asses various aspects of post- slaughtering operations				
		Gather knowledge of spice processing				
	CO4	equipment's				
	COF	Understand importance of by product				
	CO5	processing and waste utilization				
		14				
		.7.	L	Т	Р	Total
Course		SFT4506				
code	1	A 1				
Course title		Food Processing and Technology II				
Scheme		2L: 1T: 0P 3 credits	2	1	0	3
and Credits Pre-	-	<u> </u>				
requisites		Food Processing and Technology I				
Objectives		To an describe a data a Notice of a series of the				
of the	1	To understand the basics of various unit				
course		operations in food processing				
	2	To memorize processing and milling of				
	<u> </u>	cereals				
	3	To explore newer techniques used for extraction of oleoresins				
		To differentiate various dairy products				
	4	and the equipment's used for its				
	_	processing				
	5	To learn different commercial processing				
	,	techniques for value addition				
		A				
		Recent advances in product and process				
		development, important aspects or process and equipment design for food				
Syllabus	1	processing; food plant layout	n	3		9
		CGMP/HACCP; process control; waste				
		management in food processing				
		Technology of cereal processing: Grain				
		storage principles; grain storage				
	2	structures; wheat milling; paddy processing; parboiling and ageing of	6	3		0
	_	rice; barley malting; sorghum, ragi and	0	3		9
		oat processing; processing of cereals				
		and millets for food uses.				
		Technology of legume and oilseed				
	.(	processing: Types of legumes and				
	2	pulses; nutritional changes during				
	30	soaking and sprouting of pulses; methods used for removal of anti-	6	3		9
	0,	nutritional compounds; oilseed				
	De	processing; newer techniques in				
	1	extraction of oleoresins.				
	4	Technology of milk and dairy processing:	6	3	0	9
		Dairy developments in India; sampling				
		and quality testing of milk; processing				
		technology of dairy products; dairy plant				

		cleaning and sanitization operational details.				
			24	12	0	36
Suggested books/ reference	1	Fundamentals of Food Process Engineering, Toledo RT, 2000, Chapman and Hall.				
	2	Chemistry and Technology of Cereals as Food and Feed by Matz				
	3	Postharvest Technology of Cereals, Pulses and Oilseeds by M Chakraverthy				
	4	Outlines of Dairy Technology by Sukumar Dey				
		^ '				
Outcomes		On completion of the course, the students will be able to				
	CO1	Understand the basic knowledge of food processing and value addition				
	CO2	Develop an overall understanding of cereal processing aspect				
	соз	Asses various aspects of oilseed processing operations				
	CO4	Gather knowledge of dairy processing equipment's				
	CO5	Understand importance of by-product processing and waste utilization				

			L	Т	Р	Total
Course		SFT4405				
code		G				
Course title		Food Ingredients and Additives				
Scheme and Credits		L:2 T:1 P:0 3 credits	0	0	4	2
Pre- requisites		Introduction to Food Technology, Food Chemistry				
Description of the Course		Course emphasis on the gaining knowlege on different ingredients and food aditives which are used in processing, preservation and storage of food products for improved quality. Course also give insight on the the mechanism of actions of different food additives, effect of processing conditions on additives as well as about the legal standards and regulations for safe use of food additives.				
Objectives of the course	1	To understand the classification of food additives and ingredient				
	2	To understand the significance of different food additives and ingredients in food quality, preservation and storage				
	3 /	To understand the safety of use of food additives and ingredients				
	40	To understand the effect of different process conditions on stability of food additives and ingredients				
Syllabus	1	Ingredients used in food production and their technology of production and application	6	3		9
	2	Additives used in food preservation such as preservatives, antioxidants, humectants etc. with respect to	8	4		12

			1				
			chemistry and food uses. Food colors				
			and dyes (Natural and synthetic) their				
			importance in processing, Food flavours				
			and taste enhancers in food processing.				
			Additives used as aids in food				
			processing such as sequesterants,				
			emulsifier, hydrocolloids, stabilizers,				
	3		anticaking and firming agents, flour	8	4		12
	•		bleaching and maturing agents,		_		
			sweeteners, acidulants etc, and their				
			functions in food processing and				
			storage.				
			Safety aspects of Food Additives.				
	4		Tolerance levels & Toxic	2	1		3
	_		levels in Foods, Legal safeguard, Risks	_	_		
			of food additives.				
			. 7	24	12	0	36
Suggested			Food Additives: Characteristics,				
books/	1		Detection and Estimation by S.N.				
reference	-		Mahindru in 2008 Aph Publishing				
· Cici Glice			Corporation, New Delhi. S.S.				
			Handbook of Food Toxicology by S. S.				
	2		Deshpande in 2002. Marcel and Dekker				
			AG, Basel, Switzerland.				
			Food Additives 2nd Edition By A L				
	3		Brannen, P M Davidson, S Salminen, J H				
	3		Thorngate III in 2002(eds). Marce				
			IDekker Inc, New York.				
			Handbook of Food Additivies, 2ndedn, T				
	4		E Furia in 1972, (ed) CRC Press,				
			Cleveland, Ohio				
			Λ,				
			On completion of the course, the				
Automos			on completion of the course, the				
Outcomes			students will be able to				
Outcomes	CO1		students will be able to  Describe the various additives and				
Outcomes	CO1		students will be able to  Describe the various additives and ingredients used in food industries				
Outcomes	CO1		Describe the various additives and ingredients used in food industries  Understand the importance and				
Outcomes			students will be able to  Describe the various additives and ingredients used in food industries  Understand the importance and mechanisms of action of different food				
Outcomes	CO1		students will be able to  Describe the various additives and ingredients used in food industries  Understand the importance and mechanisms of action of different food additives in processing, preservation				
Outcomes			students will be able to  Describe the various additives and ingredients used in food industries  Understand the importance and mechanisms of action of different food additives in processing, preservation and storage of food.				
Outcomes	CO2		students will be able to  Describe the various additives and ingredients used in food industries  Understand the importance and mechanisms of action of different food additives in processing, preservation				
Outcomes			students will be able to  Describe the various additives and ingredients used in food industries  Understand the importance and mechanisms of action of different food additives in processing, preservation and storage of food.  Understaning the safety of use of food additives and ingredients				
Outcomes	CO2		students will be able to  Describe the various additives and ingredients used in food industries  Understand the importance and mechanisms of action of different food additives in processing, preservation and storage of food.  Understaning the safety of use of food additives and ingredients  Extrapolate the knowledge gained on				
Outcomes	CO2		students will be able to  Describe the various additives and ingredients used in food industries  Understand the importance and mechanisms of action of different food additives in processing, preservation and storage of food.  Understaning the safety of use of food additives and ingredients  Extrapolate the knowledge gained on food additives and ingredients in food				
Outcomes	CO2		students will be able to  Describe the various additives and ingredients used in food industries  Understand the importance and mechanisms of action of different food additives in processing, preservation and storage of food.  Understaning the safety of use of food additives and ingredients  Extrapolate the knowledge gained on				
Outcomes	CO2		students will be able to  Describe the various additives and ingredients used in food industries  Understand the importance and mechanisms of action of different food additives in processing, preservation and storage of food.  Understaning the safety of use of food additives and ingredients  Extrapolate the knowledge gained on food additives and ingredients in food				
Outcomes	CO2		students will be able to  Describe the various additives and ingredients used in food industries  Understand the importance and mechanisms of action of different food additives in processing, preservation and storage of food.  Understaning the safety of use of food additives and ingredients  Extrapolate the knowledge gained on food additives and ingredients in food	L	T	P	Total
Course	CO2		students will be able to  Describe the various additives and ingredients used in food industries  Understand the importance and mechanisms of action of different food additives in processing, preservation and storage of food.  Understaning the safety of use of food additives and ingredients  Extrapolate the knowledge gained on food additives and ingredients in food industries	L	T	P	Total
Course	CO2		students will be able to  Describe the various additives and ingredients used in food industries  Understand the importance and mechanisms of action of different food additives in processing, preservation and storage of food.  Understaning the safety of use of food additives and ingredients  Extrapolate the knowledge gained on food additives and ingredients in food	L	T	P	Total
Course	CO2		students will be able to  Describe the various additives and ingredients used in food industries  Understand the importance and mechanisms of action of different food additives in processing, preservation and storage of food.  Understaning the safety of use of food additives and ingredients  Extrapolate the knowledge gained on food additives and ingredients in food industries	L	T	P	Total
Course	CO2	8	students will be able to  Describe the various additives and ingredients used in food industries  Understand the importance and mechanisms of action of different food additives in processing, preservation and storage of food.  Understaning the safety of use of food additives and ingredients  Extrapolate the knowledge gained on food additives and ingredients in food industries  SFT4507  Food Packaging Science and	L	T	P	Total
Course code Course title	CO2	8	students will be able to  Describe the various additives and ingredients used in food industries  Understand the importance and mechanisms of action of different food additives in processing, preservation and storage of food.  Understaning the safety of use of food additives and ingredients  Extrapolate the knowledge gained on food additives and ingredients in food industries  SFT4507  Food Packaging Science and Technology			-	
Course code Course title Scheme	CO2	60	students will be able to  Describe the various additives and ingredients used in food industries  Understand the importance and mechanisms of action of different food additives in processing, preservation and storage of food.  Understaning the safety of use of food additives and ingredients  Extrapolate the knowledge gained on food additives and ingredients in food industries  SFT4507  Food Packaging Science and	L 2	T 1	P	Total 3
Course code Course title Scheme and Credits	CO2	200	students will be able to  Describe the various additives and ingredients used in food industries  Understand the importance and mechanisms of action of different food additives in processing, preservation and storage of food.  Understaning the safety of use of food additives and ingredients  Extrapolate the knowledge gained on food additives and ingredients in food industries  SFT4507  Food Packaging Science and Technology  2L: 1T: 0P 3 credits			-	
Course code Course title Scheme and Credits Pre-	CO2		students will be able to  Describe the various additives and ingredients used in food industries  Understand the importance and mechanisms of action of different food additives in processing, preservation and storage of food.  Understaning the safety of use of food additives and ingredients  Extrapolate the knowledge gained on food additives and ingredients in food industries  SFT4507  Food Packaging Science and Technology			-	
Course code Course title Scheme and Credits Pre- requisites	CO2		students will be able to  Describe the various additives and ingredients used in food industries  Understand the importance and mechanisms of action of different food additives in processing, preservation and storage of food.  Understaning the safety of use of food additives and ingredients  Extrapolate the knowledge gained on food additives and ingredients in food industries  SFT4507  Food Packaging Science and Technology  2L: 1T: 0P 3 credits  Introduction to Food Technology			-	
Course code Course title Scheme and Credits Pre-requisites Objectives	CO2		students will be able to  Describe the various additives and ingredients used in food industries  Understand the importance and mechanisms of action of different food additives in processing, preservation and storage of food.  Understaning the safety of use of food additives and ingredients  Extrapolate the knowledge gained on food additives and ingredients in food industries  SFT4507  Food Packaging Science and Technology  2L: 1T: 0P 3 credits  Introduction to Food Technology  To understand the role of food			-	
Course code Course title Scheme and Credits Pre-requisites Objectives of the	CO2		students will be able to  Describe the various additives and ingredients used in food industries  Understand the importance and mechanisms of action of different food additives in processing, preservation and storage of food.  Understaning the safety of use of food additives and ingredients  Extrapolate the knowledge gained on food additives and ingredients in food industries  SFT4507  Food Packaging Science and Technology  2L: 1T: 0P 3 credits  Introduction to Food Technology			-	
Course code Course title Scheme and Credits Pre-requisites Objectives	CO2		Students will be able to  Describe the various additives and ingredients used in food industries  Understand the importance and mechanisms of action of different food additives in processing, preservation and storage of food.  Understaning the safety of use of food additives and ingredients  Extrapolate the knowledge gained on food additives and ingredients in food industries  SFT4507  Food Packaging Science and Technology  2L: 1T: 0P 3 credits  Introduction to Food Technology  To understand the role of food packaging in food preservation			-	
Course code Course title Scheme and Credits Pre-requisites Objectives of the	CO2		Students will be able to  Describe the various additives and ingredients used in food industries  Understand the importance and mechanisms of action of different food additives in processing, preservation and storage of food.  Understaning the safety of use of food additives and ingredients  Extrapolate the knowledge gained on food additives and ingredients in food industries  SFT4507  Food Packaging Science and Technology  2L: 1T: 0P 3 credits  Introduction to Food Technology  To understand the role of food packaging in food preservation  To understand the nature of different			-	
Course code Course title Scheme and Credits Pre-requisites Objectives of the	CO2		students will be able to  Describe the various additives and ingredients used in food industries  Understand the importance and mechanisms of action of different food additives in processing, preservation and storage of food.  Understaning the safety of use of food additives and ingredients  Extrapolate the knowledge gained on food additives and ingredients in food industries  SFT4507  Food Packaging Science and Technology  2L: 1T: 0P 3 credits  Introduction to Food Technology  To understand the role of food packaging in food preservation  To understand the nature of different materials used in food packaging			-	
Course code Course title Scheme and Credits Pre-requisites Objectives of the	CO2 CO3 CO4		students will be able to  Describe the various additives and ingredients used in food industries  Understand the importance and mechanisms of action of different food additives in processing, preservation and storage of food.  Understaning the safety of use of food additives and ingredients  Extrapolate the knowledge gained on food additives and ingredients in food industries  SFT4507  Food Packaging Science and Technology  2L: 1T: 0P 3 credits  Introduction to Food Technology  To understand the role of food packaging in food preservation  To understand the nature of different materials used in food packaging  To understand the various food			-	
Course code Course title Scheme and Credits Pre-requisites Objectives of the	CO2		students will be able to  Describe the various additives and ingredients used in food industries  Understand the importance and mechanisms of action of different food additives in processing, preservation and storage of food.  Understaning the safety of use of food additives and ingredients  Extrapolate the knowledge gained on food additives and ingredients in food industries  SFT4507  Food Packaging Science and Technology  2L: 1T: 0P 3 credits  Introduction to Food Technology  To understand the role of food packaging in food preservation  To understand the nature of different materials used in food packaging  To understand the various food packaging applications with respect to			-	
Course code Course title Scheme and Credits Pre-requisites Objectives of the	CO2 CO3 CO4		students will be able to  Describe the various additives and ingredients used in food industries  Understand the importance and mechanisms of action of different food additives in processing, preservation and storage of food.  Understaning the safety of use of food additives and ingredients  Extrapolate the knowledge gained on food additives and ingredients in food industries  SFT4507  Food Packaging Science and Technology  2L: 1T: 0P 3 credits  Introduction to Food Technology  To understand the role of food packaging in food preservation  To understand the nature of different materials used in food packaging  To understand the various food			-	

	I						
			package testing methods employed to				
			evaluate quality, performance and				
			safety of food packaging materials				
			To understand various food-package				
	5		interactions and environmental issues				
			related to packaging				
	6		To understand newer food packaging				
	0		application technologies				
			Ñ,				
			Introduction to food packaging; causes				
			of food spoilage; factors affecting food				
Syllabus	1		spoilage; packaging as a method for	8	4		12
•			preservation of foods; functions of food				
			packaging				
			Different materials used in food				
	_		packaging such as paper, glass, metal	_	_		
	2		containers, plastics,	6	3		9
			laminates/composites				
			Testing of various packaging materials				
	3		and packages for evaluation of qualit	2	1		3
	-		Food and Packaging material				
	4		interactions including migration,	2	1		3
			scalping off-flavour; biodegradable				
	-		packaging				
			Newer packaging technologies-				
	5		VP/CAP/MAP; aseptic processing and	6	3		
			packaging; active and				
			intelligentpackaging				
				24	12	0	36
Suggested	_		Packaging Media by Paine F.A. Publisher:				
books/	1		Blackie and son Ltd., Bishop Briggs				
reference			(1977)				
			Food Packaging and Preservation: theory				
	2		and practice by Mathlouthi. M. Publisher				
			Elsevier applied science publishers.				
		1 1	Landan/1066)				
			London(1966)				
			,				
Outcomes			On completion of the course, the				
Outcomes			On completion of the course, the students will be able to				
Outcomes	CO1		On completion of the course, the students will be able to justify the role of food packaging in food				
Outcomes	CO1		On completion of the course, the students will be able to				
Outcomes			On completion of the course, the students will be able to justify the role of food packaging in food preservation describe different food packaging				
Outcomes	CO1		On completion of the course, the students will be able to justify the role of food packaging in food preservation describe different food packaging materials and their properties				
Outcomes	CO2		On completion of the course, the students will be able to justify the role of food packaging in food preservation describe different food packaging materials and their properties describe packaging of various food				
Outcomes			On completion of the course, the students will be able to justify the role of food packaging in food preservation describe different food packaging materials and their properties describe packaging of various food commodities				
Outcomes	CO2		On completion of the course, the students will be able to justify the role of food packaging in food preservation describe different food packaging materials and their properties describe packaging of various food commodities comprehend food and packaging				
Outcomes	CO2		On completion of the course, the students will be able to justify the role of food packaging in food preservation describe different food packaging materials and their properties describe packaging of various food commodities comprehend food and packaging material interactions				
Outcomes	CO2 CO3		On completion of the course, the students will be able to justify the role of food packaging in food preservation describe different food packaging materials and their properties describe packaging of various food commodities comprehend food and packaging material interactions describe newer food packaging				
Outcomes	CO2		On completion of the course, the students will be able to justify the role of food packaging in food preservation describe different food packaging materials and their properties describe packaging of various food commodities comprehend food and packaging material interactions				
Outcomes	CO2 CO3	, c	On completion of the course, the students will be able to justify the role of food packaging in food preservation describe different food packaging materials and their properties describe packaging of various food commodities comprehend food and packaging material interactions describe newer food packaging				
Outcomes	CO2 CO3	8	On completion of the course, the students will be able to justify the role of food packaging in food preservation describe different food packaging materials and their properties describe packaging of various food commodities comprehend food and packaging material interactions describe newer food packaging	L	T	P	Total
Outcomes	CO2 CO3	000	On completion of the course, the students will be able to justify the role of food packaging in food preservation describe different food packaging materials and their properties describe packaging of various food commodities comprehend food and packaging material interactions describe newer food packaging technologies	L	T	P	Total
Course	CO2 CO3	600	On completion of the course, the students will be able to justify the role of food packaging in food preservation describe different food packaging materials and their properties describe packaging of various food commodities comprehend food and packaging material interactions describe newer food packaging	L	Т	P	Total
Course	CO2 CO3	900	On completion of the course, the students will be able to justify the role of food packaging in food preservation describe different food packaging materials and their properties describe packaging of various food commodities comprehend food and packaging material interactions describe newer food packaging technologies	L	T	P	Total
Course	CO2 CO3	900	On completion of the course, the students will be able to justify the role of food packaging in food preservation describe different food packaging materials and their properties describe packaging of various food commodities comprehend food and packaging material interactions describe newer food packaging technologies  SFP4301  Food Analysis Laboratory				
Course code Course title	CO2 CO3		On completion of the course, the students will be able to justify the role of food packaging in food preservation describe different food packaging materials and their properties describe packaging of various food commodities comprehend food and packaging material interactions describe newer food packaging technologies	L	T 0	P 4	Total 2
Course code Course title Scheme	CO2 CO3		On completion of the course, the students will be able to justify the role of food packaging in food preservation describe different food packaging materials and their properties describe packaging of various food commodities comprehend food and packaging material interactions describe newer food packaging technologies  SFP4301 Food Analysis Laboratory OL:OT: 4P 2 credits				
Course code Course title Scheme and Credits	CO2 CO3		On completion of the course, the students will be able to justify the role of food packaging in food preservation describe different food packaging materials and their properties describe packaging of various food commodities comprehend food and packaging material interactions describe newer food packaging technologies  SFP4301  Food Analysis Laboratory				
Course code Course title Scheme and Credits Pre-	CO2 CO3		On completion of the course, the students will be able to justify the role of food packaging in food preservation describe different food packaging materials and their properties describe packaging of various food commodities comprehend food and packaging material interactions describe newer food packaging technologies  SFP4301  Food Analysis Laboratory  OL:OT: 4P 2 credits  Introduction to Food Technology  To give students hands on training on				
Course code Course title Scheme and Credits Pre-requisites	CO2 CO3		On completion of the course, the students will be able to justify the role of food packaging in food preservation describe different food packaging materials and their properties describe packaging of various food commodities comprehend food and packaging material interactions describe newer food packaging technologies  SFP4301  Food Analysis Laboratory  OL:OT: 4P 2 credits  Introduction to Food Technology				
Course code Course title Scheme and Credits Pre-requisites Objectives	CO2 CO3		On completion of the course, the students will be able to justify the role of food packaging in food preservation describe different food packaging materials and their properties describe packaging of various food commodities comprehend food and packaging material interactions describe newer food packaging technologies  SFP4301  Food Analysis Laboratory  OL:OT: 4P 2 credits  Introduction to Food Technology  To give students hands on training on				
Course code Course title Scheme and Credits Pre-requisites Objectives of the	CO2 CO3 CO4 CO5		On completion of the course, the students will be able to justify the role of food packaging in food preservation describe different food packaging materials and their properties describe packaging of various food commodities comprehend food and packaging material interactions describe newer food packaging technologies  SFP4301  Food Analysis Laboratory  OL:OT: 4P 2 credits  Introduction to Food Technology  To give students hands on training on chemical analysis of specific food				
Course code Course title Scheme and Credits Pre-requisites Objectives of the	CO2 CO3 CO4 CO5		On completion of the course, the students will be able to justify the role of food packaging in food preservation describe different food packaging materials and their properties describe packaging of various food commodities comprehend food and packaging material interactions describe newer food packaging technologies  SFP4301  Food Analysis Laboratory  OL:OT: 4P 2 credits  Introduction to Food Technology  To give students hands on training on chemical analysis of specific food products				
Course code Course title Scheme and Credits Pre-requisites Objectives of the	CO2 CO3 CO4 CO5		On completion of the course, the students will be able to justify the role of food packaging in food preservation describe different food packaging materials and their properties describe packaging of various food commodities comprehend food and packaging material interactions describe newer food packaging rechnologies  SFP4301 Food Analysis Laboratory OL:OT: 4P 2 credits Introduction to Food Technology To give students hands on training on chemical analysis of specific food products To analyse and quantify chemically the				

	, ,					
		analysis of food				
	4	To train the students on different				
	-	biochemical assay for food products				
Syllabus	1	Proximate composition in food			4	4
	2	Analysis of milk and dairy products			4	4
	3	Analysis of wheat flour			4	4
	4	Analysis of tea and coffee			4	4
	5	Estimation of phytochemicals			8	8
	6	Analysis of Food adulteration			4	4
		Discriminative and Descriptive Sensory			-	
	7	analysis of Foods			8	8
		Demo of colorimeter, texture analyzer,				
	8	DSC, etc.			4	4
	9	Demo of HPLC, GC-MS, etc.			4	4
		Demo of spray drier, extruder, SCFE,			-	-
	10	Tray drier etc.				
	11	Microbial assay				
	12	, , , , , , , , , , , , , , , , , , , ,			4	1
	12	Enzyme assay	_	0	48	48
			0	U	48	48
		1010 11 1 1000 055 11				
		AOAC International. 2003. Official				
Suggested		methods of analysis of AOAC				
books/	1	International. 17th Ed. Gaithersburg,				
reference		MD, USA, Association of Analytical				
		Communities				
		Leo ML.2004. Handbook of Food				
	2	Analysis. 2nd Edition. Vol 1,2 and 3,				
		Marcel Dekker				
		()				
Outcomes		On completion of the course, the				
- Gattonics		students will be able to				
		Demonstrate the knowledge of redox				
	CO1	chemical reactions to develop a protocol				
		for analysing specific food attributes				
	CO2	Interpret different chemical and				
	CO2	biochemical analysis specific to food				
	соз	Compare protocols on different types of				
	COS	chemical and sensory analysis in foods				
	604	Apply and infer about the principles of				
	CO4	different enzyme and vitamin assays				
		X				
				_		T-4-
		- 0	L	Т	Р	Tota
Course	1	17				

			0			т	Р	Total
Course code			, Co			•	•	lotai
Course title			Food Processir	ng Laboratory				
Scheme and Credits		5.	L:0 T:0 P:4	2 credits	0	0	4	4
Pre- requisites		Y	Introduction to F Processing I and	ood Technology, Food II				
Description of the Course	.(	3	their hands on h processing equipunderstanding a	to student to improve andling different food oments. Also develop bout food product and tion in food industry.				
Objectives of the course	200		To analyze the ir in food formulati	ntegration of processing ons				
	<b>Y</b> ₂		chart for any pro	evelop the process flow oduct development				
	3		formulations in f					
	4		To evaluate the	processing cost of any				

		developed product				
Syllabus	1	Preparation of tomatoes products	0	0	8	8
Synabas		(minimum three types)  Preparation of fruit preserves from				
	2	selected fruits (minimum three types)	0	0	8	8
	3	Preparation of selected bakery products (minimum three types)	0	0	8	8
	4	Preparation of fermented food products	0	0	4	4
	5	(minimum three types)  Preparation of value added poultry/meat/ egg products (minimum three types)	0	0	8	8
	6	Preparation of fried products (minimum three types)	0	0	4	4
	7	Preparation of milk based food products (minimum three types)	0	0	4	4
	8	Preparation of sugar based sweets/traditional Indian confection products (minimum three types)	0	0	4	4
	9	Preparation of extrudate snack products (minimum three types)	0	0	48	48
	10	Preparation of non-alcoholic beverages (minimu three types)				
	11	Preparation of soy based food products (minimum three types)				
	12	Demostration and preparation of dehydrated food product using spray, cabinet or vaccum dryer				
Suggested books/ reference	1	Handbook of Food Products Manufacturing Principles, Bakery, Beverages, Cereals, Cheese, Confectionary, Fats, Fruits, and Functional Foods by Y.H. Hui. 2007. John Wiley & Sons, Inc., Hoboken, New Jersey, USA				
	2	Meat and Meat Products Technology Including Poultry Products Technology by B.D. Snarma in 1999. Jaypee Brothers Medical Publishers Pvt. Ltd, New Delhi.				
	3	New Food Product Development: From Concept to Market place by Fuller, G.W. in 2011. 3rd ed, CRCPress, UK				
	4	Preservation of Fruits and Vegetables by GiridhariLal, G.S. Siddappa,G.L.Tandon in 1998, ICAR,NewDelhi.				
Outcomes		Course Outcomes (students will be able to)				
	CO1	Apply the knowledge of material balance specific to different food processing operations (K1)				
	CO2	Explain the major processing steps applied for food preparations (K2)				
	соз	Use different food processing equipment specific to the product (K3)				
	CO4	Develop protocol for different types of food preparations (K4)				
	CO5	Apply the engineering principles to design novel food product and process(K4).				

Course code SFT3201

Course title Biochemistry and Microbiology
Scheme and Credits 2 L: 1 T: 0 P 3 Credits

**Objectives of the** 

course

This course aims to provide information on basics of biochemistry, structure and function of DNA and RNA, details about microorganism, cell culture and cell cloning.

		ceil culture and ceil cloning.	Total
Course title		Detailed contents	Total
Biochemistry and Microbiology	1	Water and biomolecules. Introduction to biochemistry. Carbohydrates: Fundamentals of chemistry of carbohydrates. Monosaccharides, oligosaccharides and polysaccharides. Qualitative tests and color reactions. Quantitative analysis. Biosynthesis. Lipids: Fatty acids, waxes. phospholipids, sphingolipids, sterols and terpenoids. Function and comparative distribution of lipids. Biosynthesis. Hydrogenation. Sap value, lodine value, Acid value. Biochemical tests. Lipoproteins and lipopolysaccharides. Amino acids: pK, pl, structure and chemistry Protein: Structure and function. Globular and fibrous proteins. Enzymes and activity assay. Qualitative and quantitative tests for amino acids, proteins. Precipitation of proteins. Solid phase peptide synthesis. Protein sequencing. Protein metabolism. Transmutation, SGOT/SGPT, deamination and decarboxylation. Vitamins and Co-enzymes: Structure and function. Qualitative and quantitative analysis. DNA and RNA: Structure and function. DNA - RNA - Protein. Sequencing. Fluorescence tagging. Recombination and repair. Gene and control of gene	10
	2	expression. Operon. History of microbiology (focus on microscopy). Types of microscopes. Application of microbiology. Introduction to cell and cell classification as prokaryotes and eukaryotes. Parts of the cell. Tissue and its property.	2
	4	Microorganisms: types, structure and properties. Habitat, nutrition and cultivation. Motility.  Different types of staining techniques (with reference to bacteria): Monochromatic staining, Gram staining, Acid fast staining, Capsule – flagella – spore – cell wall staining, Negative staining.  Virus: Types and structure. Reproduction and cultivation. Oncogenic and HIV viruses.  Cell culture: Isolation and identification of pure culture.	8
	4,0	Culture media and their types. Introduction to biosafety. Sterilization methods. Aseptic technique. Biocontainment. Disinfection and disinfectants. Mutation: Types and mechanisms. Mutagenic agents.	6
`	6	Evolution. Cell cloning: PCR and DNA amplification, restriction enzymes, DNA digestion, DNA ligation, transformation. Gibson assembly. Recombinant cells and selection markers. Vectors and plasmids. Competent cells. Reverse	8

transcription. cDNA. Transfection. CRISPR technique. Cell preservation.

Total 36

Suggested text/referenc e books

- Microbiology Concepts and Applications: M. J. Pelczar Jr., E. C. S. Chan and N. R. Krieg
  - 2. Lehninger: Principles of Biochemistry: David Nelson, Michael Cox
  - 3. Outlines of Biochemistry: Eric Conn and Paul K Stumf 4. Harpers Biochemistry: Robert Murray, Daryl Granner

#### Special Subject 2:

## **Introduction to Food Technology**

Course code		SFT3302			
Course title		Introduction to Food Technology			
Scheme and Credits		2 L: 1 T: 0 P 3 Credits			
Objectives of the course		This course aims to understand the fundamental concepts in food technology. The course will briefly explain the various thermal and non-thermal processes adopted in food industries to preserve the food during storage and packaging.			
Course title		Detailed contents	Total		
		, 0	contact h		
	1	Introduction to food processing of various foods including dairy, bakery, agri commodities and newer developments such as fabricated foods, functional foods, designer food, nutraceuticals, probiotics and prebiotics. Concept of personalized nutrition and special food for infants, women etc.	8		
	2	Thermal processing principles; Inactivation Kinetics; Process time calculation; Retort processing; UHT; Advances in food processing techniques both thermal and nonthermal. Extrusion	8		
Introduction to Food Technology	3	Ohmic heating, pulsed electric field, high-intensity light pulses, radio-frequency heating, microwave, thermo- sonication, modified atmosphere, enzymic processing and hurdle technology etc.	6		
	4	High hydrostatic processing of foods. Effect on enzymes, microorganisms in various food systems Equipment for batch and continuous processing. Other applications of HPP including thawing	8		
	5	Recent developments in Food Processing with focus on Indian Industry, Advanced Membrane Technology for water and Inquid foods and effluent treatment., dehydration. Freezing, VCRS, freezing time, Freeze drying	6		
	1	Total	36		
Suggested text/referenc e books	2. I	Advances in food and nutrition research by Steve L. Taylor, 2009 Handbook of food and bioprocess modeling by Sablani S., Rahman M, 2007 Pood processing and technology: Principle and practice by P Fellows,			
		Taylor and Francis, 2009			

# Special Subject 3:

**Nutrition and Nutraceuticals** 

Course code SFT3403

Course title Nutrition and Nutraceuticals

Scheme and Credits 2 L: 1 T: 0 P 3 Credits

Objectives of the course

This course aims to provide advance knowledge on various biomolecules showing health benefits and to make aware on various sources and characterization of biomolecules showing health benefits.

Also, to gain knowledge about the nutraceutical constituents present in various food products and understand the extraction techniques of plant-based nutraceuticals.

	Total			
Course title	Detailed contents	contact h		
	Classification of food components based on nutritic value, nutritional assessment of carbohydrates, protein and fats, recommended dietary intake, acceptable die intake, nitrogen balance, protein efficiency ratio, protein utilization.  Basics of energy balance - Basal Metabolic Rate (BI Body Mass Index (BMI) and Standard Dynamic Actions.	onal eins tary net 6 MR),		
	<ul> <li>(SDA) with special reference to nutraceutical industry.</li> <li>Defining nutraceuticals. Nature type and scope nutraceuticals compounds and their classification be on chemical and biochemical nature with suitable relevant descriptions.</li> </ul>	sed 6		
	relevant descriptions. 3 Disease and Nutrition:			
Nutrition and	Functions of dietary fiber (soluble and insoluble) in cor of certain disease conditions like diabetes, cancer, h diseases etc. Effect of drugs on ingestion, diges absorption & metabolism of nutrients, Effect of f nutrients & nutritional status in drug dosage & efficacy 4 Functional Foods and their applications: Role	eart 6 tive Tood 1.		
Nutraceutical s	Isoprenoids, Isoflavones, Flavonoids, carotend Tocotrienols, polyunsaturated fatty acids, sphingolip lecithin, choline. Terpenoids, whey and soy prot Vegetables, seeds, cereals, sea foods, milk, and d products as Functional foods. Probiotics and prebiotics Role of nutraceuticals with special reference to diabomellitus, hypertension, hypercholesterolemia, can glands in the prevention and treatment.	oids, oids, cein. airy 9 etes		
	5 Nutraceutical evaluation and testing: Biological tes and bioassays, preclinical testing, and clinical tr Quality control and quality assurance of nutraceutic Marketing of nutraceuticals.	ials.		
	Nutritional genomics: Plants as bioreactors as a tool production of Nutraceuticals. 'Tailor-made' carbohydra and lioids of plant and non-plant origin. Transgenic plates for the large-scale production of proteins pharmaceutical and industrial uses. Comme transgenic crops like herbicide resistant soybean, may vegetables, fruit crops, golden rice.	ates ants for 5 rcial aize,		
Suggested	lotal - Brigelius-Flohé, J & Joost HG. Nutritional Genomics: II	36 mpact on Health		
text/	and Disease.Wiley VCH. 2006.			
reference	- Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition - Cupp J & Composition			

# books

- Pharmacology. Humana Press.
- Gibson GR & Concept to Product. 2000.
- Losso JN. Angi-angiogenic Functional and Medicinal Foods. CRC Press. 2007. Robert E.C. Wildman Handbook of Nutraceuticals and Functional Foods, CRC, 2006.
- L. Rapport and B. Lockwood Nutraceuticals, 2nd Edition, Pharmaceutical Press (2002).

Special subject 4 **Food Chemistry**  Course code SFT3404

Course title Food Chemistry

Scheme and Credits 2 L: 1 T: 0 P 3 Credits

# Objectives of the course

This course will be helpful to learn fundamentals of food chemistry and understand the standards of identity based on authentic chemical composition. Also, to understand the interactions of different constituents within the food systems, the various contaminants and toxicants present in the food systems. To apply knowledge to judge the quality and authenticity of the food.

Total **Detailed contents Course title** contact h Food chemistry and its role in food processing. Water: 1 Importance of water in foods, Structure of water & ice, 6 Concept of bound and free water and their implications. 2 Browning reactions: Enzymatic and non-enzymatic browning, advantages and disadvantages, factors 6 affecting their reaction and control. 3 Plant pigment: Importance, structure and properties of plant pigments, chemical changes of in pigments during food processing. 6 Flavour and aroma of foods: Importance, structure and properties of flavouring and aromatic components of foods. Food additives- definitions, classification, and functions, 4 food additives, food need preservatives, classifications, antimicrobial agents (types, mode of action and their application). 6 Nutrient supplements & thickeners, polysaccharides, **Food** bulking agents, antifoaming agents, synergists, Chemistry antagonists( antagonists
Antioxidants (synthetic and natural, mechanism of 5 oxidation inhibition), chelating agents: types, uses and 6 mode of action. Coloring agents: color retention agents, applications and 6 levels of use, natural colorants, sources of natural color (plant, microbial, animal and insects), misbranded colors, color extraction techniques, color stabilization. Flavoring agents: flavors (natural and synthetic flavors), flavor enhancers. flavor stabilization. encapsulation. 6 Flour improvers: leavening agents, humectants, and sequestrants, hydrocolloids, acidulants, pH control agents buffering salts, anticaking agents. Sweeteners: natural and artificial sweeteners, nutritive and non-nutritive sweeteners, properties and uses of various sweeteners in food products.

# Suggested text/ reference books

Owen Fennema, Food chemistry, CRC Press

Peter, Schieberle, Grosch, Belitz, Werner, Food Chemistry, Springer

Total

- Meyer, Food chemistry, Indian
- Harish Kumar Chopra, Parmjit Singh Panesar, Food Chemistry, Indian
- Food Additives, 2nd and, AL Brannen, PM Davidson, S Salminen, JH Thorngate III, 2002 (eds). Marcel Dekker Inc, New York, pp. 1-9
- Handbook of Food Additives, 2nd edn, TE Furia, 1972, (ed) CRC Press, Cleveland, Ohio.

36

- Madhavi, Deshpande and Salunkhe, Food Antioxidants: Technological, Toxicological and Health Perspective, CRC Press.

#### Special subject 5

Food Processing and Technology

Course code SFT3405

Course title Food Processing and Technology
Scheme and Credits 2 L: 1 T: 0 P 3 Credits

Objectives of the

course

This course will be useful to acquaint with principles of different techniques used in processing and preservation of foods and to learn various heat transfer related unit operations in food processing.

	various neat transfer related unit operations in food processing.				
Course title		Detailed contents	Total		
	-	(1)	contact h		
	1	Material and energy balance in food processing			
		operations, Heat Transfer Theory and	4		
		Applications. Conduction, convection and radiation heat	•		
		transfer.			
	2	Thermal processing, sterilization, pasteurization,			
		blanching, thermal death time, F values, equivalent killing			
		power at other temperatures. In-can processing, thermal	5		
		process calculations for canned foods, retorts. Types of			
		heat exchangers.			
	3	Evaporation Theory: Boiling point elevation, Raoult's law,			
		Duhring's rule, Duhring plot, latent heats of vaporization.			
		Evaporation of heat sensitive materials, heat transfer in	5		
		evaporators, vacuum evaporation and evaporation			
		equipment.			
Food	4	Drying theory, drying characteristics, selection of dryers,			
Processing	•	different types of dryers and their working principles, food	5		
and		freezing theory and equipment, chilling.	3		
Technology	5	Contact equilibrium process, extraction process, rate of			
	3	extraction, stage-equilibrium extraction, solvent			
		extraction, supercritical fluid extraction, extraction	5		
		equipment. Crystallization, crystallization equipment.			
	6	Size reduction: Grinding, Cutting, Emulsification,			
	U	homogenization, energy concept in size reduction, Kick's			
		law, Rittinger's law, Bond's law. Grinding and milling	5		
		[]			
	7	equipment.			
	,	Mechanical separations: Sedimentation and filtration,	4		
		membrane separations, Sieving / Screening, Sieve	4		
	8	analysis.  Parhailing Extrusion Enving Polying Proceeding Puffing			
	ŏ	Parboiling, Extrusion, Frying, Baking, Roasting, Puffing,	2		
	١.	Agitation and mixing, Irradiation and non-thermal	3		
		processing operations. Total	36		
Suggested	. R.Q	Earle, Unit Operations in Food Processing, NZIFST (Inc.)	30		
text/		Toledo, Fundamentals of Food Process Engineering, Springer			
reference		Brennan, Food Processing Handbook, WILEY-VCH Verlag G			
	Kga				
books - A.S. Mujumdar, Handbook of Industrial Drying, Taylor and Francis					
		Berk, Food Process Engineering and Technology, ELSEVIER			

Special subject 6

Packaging and Recycle Technology

Course code SFT3506

Course title Packaging and Recycle Technology

Scheme and C	redits	2 L: 1 T: 0 P	3 Credits	
Objectives of the course		This course aims to understand the food packaging development, packaging systems and analyze complex systems of food packaging. Role of packaging in safety and stability of food materials and to understand environmental concerns and life cycle assessment.		
Course title		De	tailed contents	Total contact h
	1	package and typ packaging mater Selection criteria	kaging, marketing consideration for a es of packaging. Barrier properties of rial, Packaging materials for foods. of packaging materials for raw and	7
	2	nutrition labelling	oducts.  ackaging. Package labelling: functions,  g, ingredient characterization handling  gulations Packaging logistics.	7
Packaging	3	Testing of various evaluation of qua performance (ba transport worthine etc; Package de	s packaging materials and packages for lity, for identification, for evaluation of arrier and strength properties) for ess, for biodegradability, for migration esign; Cushioning materials; shelf-life	8
Packaging and Recycle Technology	4	processing, micro pressure processing retortable pouched packaging; active migration; flavor so Application of environmental cor	als for newer techniques like radiation wave and radiowave processing, high ng, CAP/ MAP and thermal processing as es, aseptic packaging; biodegradable packaging; intelligent packaging; scalping.  rianotechnology in food packaging, neerns and life cycle assessment.	7
	5	Operations, Green Remedies in Plas Thermo plastic Re	Plastics Waste, Plastics Waste ecycling of Rubber, Post Recycling of plastics for food packaging, Faults and stics Recycling process, Processing of ecyclate, Testing consumer responses to ncepts, Safety and legislative aspects.	7
Suggested text/ reference books	- - - -	Food and Packagir Handbook of Food Food Packaging To 1996	Total nd preservation by M. Malthlouthi, 1994 ng Interactions by Risch. S. H. 1991 I Packaging by F.A. Paine and H.Y. Paine 19 echnology (Vol.1 & 2) by G. Bureau and age Engineering by Hanlon Kelsey & Forc	J. L. Multon,
Special subject 7		7,		
Recent Advances in	Regulatory	Affairs		
Course code	δ	SFT3507		
Course title	,oʻ	Recent Advance	s in Regulatory Affairs	
Scheme and C	redits	2 L: 1 T: 0 P	3 Credits	
Objectives of the course		This course helps to explain the functional role and safety issues of food contaminants and adulteration. To describe the hygiene and sanitation in processing plant, equipment, storage and handling. Also, to identify and analyze the critical quality control point in different stages of production of food and thereby designing the HACCP system.		
Course title		De	tailed contents	Total contact h
Danami	1	Indian Chandender		6

About Integrated Master of Technology Program

1

Recent

Course instruction and Grading System

Indian Standards:

Page **108** of **187** 

6

## Advances in Regulatory Affairs

2

3

4

5

6

AGMARK act and rules- Certification procedure, laboratory approvals and actions on non-compliance, appeals, BIS- scope, definition, power and functions of BIS, Licensing procedure, export and import laws and regulations, Export (Quality and inspection) act 1963; APEDA (Agricultural and Processed Food Products Export Development Authority) & MPEDA (Marine Products Export Development Authority introduction, act and rules, functions and products monitored. (Cover them briefly) FSSAI 2006, Food Safety and Standards (Licensing and Registration of Food Businesses, Food Products Standards and Food Additives, Prohibition and Restriction of Sales, Packaging and Labelling, Contaminants, Toxins and Residues, Laboratory and Sampling Analysis) Regulation, 2011 Food Safety and Standards (Health Supplements, 6 Nutraceuticals, Food for Special Dietary Use, Food for Special Medical Purpose, Functional Food and Novel Food) Regulations, 2016 Food Safety and Standards (Food Recall Procedure, import, Approval for Non-Specific Food and Food Ingredients, Organic Food, Import) Regulation, 2017 Food Safety and Standards (Alcoholic Beverages, Fortification of Food, Food Safety Auditing) Regulation, 2018 Food Safety and Standards (Recovery and Distribution of 6 Surplus food) Regulation, 2019 Food Safety and Standards (Safe food and balanced diets for children in school, Labelling and Display) Regulations, 2020 Introduction to Food Regulatory Affairs in global perspective. India (FSSAI), USA (USFDA guideline and document, Rules and Regulation- 21 CFR), Canada, Europe, United Kindom, Australia & New Zealand, South Africa, UAE (GCC). International Food Laws: Codex: Implications on trade in light of SPS and TBT, 6 Alimentarius: Role of CAC and its committees, Introduction to OIE and IPPC, Other International Food Standards (e.g. European Commission, USFDA etc). WTO: Introduction to WTO Agreements: SPS and TBT Agreement. Quality management and quality assurance: Total quality rnanagement, good manufacturing practices, good agricultural practices, good laboratory practices; Quality management systems, QSS; Quality circles, SQC; ISO system, Six Sigma. ISO: ISO 22000, 9001: 2008, PDCA cycle, Introduction, Salient features, Certification & Auditing. FSMS Food Safety Management System - 22000:2005, Introduction 6 to the family of ISO 22000 standards, Comparison of ISO 9001:2008 vs. ISO 22000:2005. HACCP: Principles, implementation; Plan documentation, types of records; Auditing: Surveillance, audit, mock audit, third party quality certifying audit, auditors and lead auditors: Certification, certification procedures. certifying bodies, accrediting bodies, international bodies. Regulatory Compliance GMP-GHP requirements. 6

Food Industry IPR, Patents, Copyrights and Trademarks

Food Licensing & Registration, Packaging & Labelling in India.

Food Product Marketing, Import and Export regulations.

Total

36

Suggested text/ reference books - Food safety by Laura K Egendorf, 2000

- International standards of food safety by Naomi Rees, David Watson, 2000

Codex alimentarius by FAO & WHO, 2007

- C. A. Roberts, "The Food Safety Information Handbook", 2nd edition, Oryx Press, 2001
- R. H. Schmidt and G. E. Rodrick, "Food Safety Handbook", 3rd edition, John Wiley & Sons, 2005.
- N. Rees and D. Watson, "International standards for food safety", 1st edition, Aspen publishers, Gaithersburg, Maryland. 2000.
- P. L. Knechtges, "Food safety: Theory and Practice", 1st edition, Jones and Bartlett learning, UK, 2012.
- Lawley, R., Curtis L. and Davis, J. The Food Safety Hazard Guidebook, RSC publishing, 2004.
- Guide to US Food Laws and Regulations, 2nd Edition Patricia A. Curtis (Editor) ISBN: 978-1-118-22778-7. Year 2013.

#### Special Lab 1

- 1 To determine the moisture content of food products using different methods
- 2 To determine the water activity of food products using different methods
- 3 Quality analysis of food products using colorimeter
- 4 To determine protein content of food products
- 5 To determine fat content of food products

#### Special Lab 2

- 1 To study the quality degradation kinetics of food products using different methods of heating
- To study the color degradation kinetics of food products during different methods blanching
- To study the textural properties of food products treated with different heating methods
- To study the drying characteristics of food products using different methods of drying
- 5
  To study the moisture sorption isotherm characteristics of food products

# Pharma

SP #	Course Code (IOCB)	Course Code (MARJ)	Туре	List of Subjects
1	SRT330 2	SRT430 2	Theory	Introduction to Pharmaceutical Technology
2	SFT320 1	SFT420 1	Theory	Biochemistry and Microbiology
3	SRT340 3	SRT440 3	Theory	Pharmaceutical Chemistry
4	SRT350 7	SRT450 7	Theory	Formulation Technology and Drug Delivery
5	SRT350 6	SRT450 6	Theory	Pharmaceutical Technology and Drug Design
6	SRT340 4	SRT440 4	Theory	Process Development for Fine Chemicals and API
7	SRT340 5	SRT440 5	Theory	Natural Product based Pharmaceuticals
1	SRP340 1	SRP440 1	Laborator y	Pharmaceutical Analysis Laboratory
2	SRP340 3	SRP440 3	Laborator y	Pharmaceutical Chemistry and Formulation Technology Laboratory

			L	Т	Р	Tot al
Course code		SRT4301				
Course title		Introduction to Pharmaceutical Technology				
Scheme and Credits		2L: 1T: 0P 3 credits	2	1	0	3
Pre- requisites		Biochemistry/Microbiology (SFT 4201)				
Description of course		This course will give an overview of applications of technology and engineering principles in Pharmaceutical Industry				
Objectives of the course	1	Know the different drug categories				
	2	Understand basics of monophasics, biphasics, topical formulation, aerosols, stability testing				
		7				
Syllabus	1	General pharmacology (ADME, routes of administration, MOA) with different organ systems; Chemotherapy: Sulphonamides, Diaminopyridines, Quinolones, β-lactam antibiotics, Tetracyclines, Nitrobenzene derivatives, Aminoglycosides, Anti-malarial, Anti-fungal, Anti-tubercular, Anti-cancer agents, etc.	12	6		18
	POP	Solubilization techniques; Monophasics (Oral and Topicals) (solution, syrups, elixirs, linctus, glycerites, nasal drops, ear drops, etc.), Biphasic, Ointments, Creams, Gels, Suppositories, Aerosols - Suspensions and Emulsions: Pre-formulation, Principles and Stabilization techniques, Formulation Development, Evaluation, Large scale manufacture and packaging with focus on	8	4		12

		equipment, Layout design and unit			
		operations; Stability Testing			
	3	Overview of Pharmaceutical Industry;	4	1	5
		Classification of pharmaceutical dosage			
		forms and routes of drug administration;			
		Origin & development of the pharmacopoeia			
		- IP/BP/USP, Introduction to monograph and			
		Biopharmaceutics			
		Biopriarmaceutics	24		25
		· V	24	11	35
Suggested	1	Remington-The Science And Practice Of			
books/		Pharmacy (Vol.1& 2), David B.Troy, 21st			
reference		edition,2006, Lippincott Williams & Wilkins			
		· / /			
	2	Pharmacology H. P. Rang, M. M. Dale, J. M.			
		Ritter 5			
	3	J. McMurry, Brooks/Cole, Organic Chemistry			
		14			
Outcomes		On completion of the course, the students			
		will be able to			
	СО	Understand general principles of			
	1	Pharmacology including pharmacokinetics			
		and Pharmacodynamics.			
	СО	Know the different drug categories			
	2	A S A S A			
	СО	Conceptualize and develop monophasic,			
	3	biphasic and other products			
	СО	Explain stability evaluation and stabilization			
	4	of products			

		<u></u>	L	Т	Р	Tot al
Course code		SRT4403				
Course title		Pharmaceutical Chemistry				
Scheme and Credits		2L: 1T: 0P 3 credits				
Pre- requisites		Introduction to Pharmaceutical Technology,Biochemistry/Microbiology				
Objectives of the course	1	To acquaint students with nomenclature classification, molecular mechanism of action, synthesis and SAR of (a) Anti-infective agent (b) Anti-histaminic agent Anti-inflammatory agents (d) Drugs act on the cardiovascular system (e) Drugs acting on the hormonal system (f) Drugacting on the central nervous system	nt (c) ing	1	0	3
	2	To train the students with the basics of Medicinal Natural Products and Phytochemistry				
	-					
Syllabus	20	Classification of Drugs; Molecular targe Strategies in hit/lead discovery; Lead optimization; SAR, QSAR; Drug design	ts; <b>6</b>	3		9
	A-CX	Overview of Antibacterial agents; Anitparasitic agents; Antifungal agents; Antimycobacterial agents; Anticancer agents; Antiviral agents; Drugs Affectin Central Nervous System; Cholinergic Dr Adrenergic Drugs; Analgesics	g the	4		12

	3	Introduction to Anti inflammatory drugs; Cardiovascular Drugs; Drugs acting on hormonal systems; Other miscelleneous	6	3		9
	4	Classes of drugs  Molecular targets, Enzymes as drug targets, Receptors as drug targets, Target identification methods	4	2		6
			24	12	0	36
Suggested books/ reference	1	Foye's Principles Of Medicinal Chemistry W. O. Foye, Lippincott Williams & Wilkins, 6th edition, 2008.				
	2	Burger's Medicinal Chemistry & Drug Discovery(Vol. 1- 6) A. Burger And M.E. Wolff; John Wiley & Sons-New Jersey, 6th edition,2003				
	3	Textbook Of Medicinal And Pharmaceutical Chemistry Wilson And Gisvola, Lippincott Williams & Wilkins, Philadelphia, 11				
	4	The Practice of Medicinal Chemistry, C.G. Wermuth, Academic Press, 3 edition, 2008				
	5	Pharmaceutical Substances: Synthesis, Patents, Applications (N-Z) Kleemann Georg ThiemeVerlag-Stuttgart. Thieme, 4th edition, 2001				
	6	Dewick P.M., Medicinal Natural Products- A Biosynthetic Approach,2 edition/2002, John Wiley & Sons Ltd				
	7	Quality Standards of Indian Medicinal Plants, all volumes, ICMR				
		1/2				
Outcomes		On completion of the course, the students will be able to				
	CO 1	Classify drugs based on different methods				
	CO 2	Explain SAR and MOA of drugs at the molecular level of understanding				
	CO 3	Apply principles of drug discovery from hit to lead to preclinical molecules				
	CO 4	Theoretically predict absorption distribution, metapolism and excretion of drugs and related concept of prodrugs				

			7 _A .	L	Т	P	Tot al
Course code		4	SRT4507				
Course title		δ	Formulation Technology and Drug Delivery				
Scheme and Credits	0	Q)	2L: 1T: 0P 3 credits	2	1	0	3
Pre- requisites	7,0		Introduction to Pharmaceutical Technology				
Objectives of the course	R		To train the students with respect to basics and application of Technology of Solid dosage forms and introduce novel drug delivery systems				
	2		To train the students with respect to basics of validations and regulatory requirements of pharmaceuticals				

	3	To train the students with respect to basics				
		and application of Technology of sterile pharmaceuticals				
		pharmaceuticals				
Syllabus	1	Introduction to tablets, Preformulation considerations for tablet dosage form, Granulation techniques, Direct compression; Excipients in tablets; Tablets Formulation: Unit operations, tablet punching: physics of tablet punching, single punch and rotary tablet press, tablet tooling; Tablet coating	6	3		9
	2	Introduction to capsules; Preformulation considerations for capsule dosage form; Hard and soft gelatin capsules: formulation considerations, capsule manufacture equipments, quality control tests, packaging, Large scale manufacture, layout design; Microencapsulation; Oral sustained release and controlled release formulations	4	2		6
	3	Facility design for parenteral manufacture with focus on air systems HEPA filters, environmental classes for manufacture of parenterals; Methods of sterilization; Water for Injection: Monograph IP, methods of preparation, quality control tests, storage; Containers and Closures for Parenteral Formulations; Small and Large volume parenterals: Formulation (discuss various dosage forms like solutions, suspensions, emulsions, dry powders), Quality control, Large scale manufacture and packaging with focus on equipment, Layout design and Unit operations	6	3		9
	4	Introduction to novel drug delivery systems like Transdermal and Transmucosal(buccal, sublingual, nasal, vaginal, rectal); Introduction to cosmetics	4	2		6
	5	Introduction to Quality by Design, Validation, Documentation and Regulatory bodies for pharmaceuticals.	4	2		6
		70	24	12	0	36
Suggested books/ reference	1	Remington-The Science And Practice Of Pharmacy (Vol.1& 2), David B.Troy, 21st edition, 2006, Lippincott Williams & Wilkins				
	2	Pharmaceutics: The Science Of Dosage FormDesign, Michael E. Aulton, 1998, Churchill-Livingstone Dermatological Formulations, B. W. Barry, 198, New York, Marcel Dekker				
	3	ICH Guidelines				
	4,0	Coated Pharmaceutical Dosage Forms, K. H. Bauer, CRC Press, Boca Raton. Med Pharm.				
	28	Pharmaceutical Dosage Forms Vol. I & II, Liebermann, New York, Marcel Dekker, 1996.				
	6	Pharmacuetical Production Facilities: Design and Applications G. C. Co				
	7	Pharmaceutics: The Science of Dosage Form Design. Michael E.Aulton, Churchill-Livingstone, 1998				

	8	Beotra's Law of Drugs Medicins and Cosmetics K. K. Singh, L. R. Bugga for the Law Book Co.Pvt. Ltd. Allahabad		
	9	Indian Pharmacopoiea, British Pharmacopoiea, United States Pharmacopoiea.		
Outcomes		On completion of the course, the students will be able to		
	CO 1	Describe preformulation, formulation, unit operation, large scale manufacturing, layout design of tablets		
	CO 2	Explain the coating polymers, technology and equipments used for coating of tablets and describe microencapsulation techniques		
	CO 3	Describe formulations for hard and soft gelatin capsules, machinery used for filling hard gelatin capsules, process for soft gelatin capsules		
	CO 4	Describe preformulation, formulation, evaluation, packaging, large scale manufacturing and facility design of parenteral products		
	CO 5	Explain basics of novel drug delivery systems		
	CO 6	Describe product and process validation and documentation required for the pharmaceuticals		

		<u></u>	L	Т	P	Tot al
Course code		SRT4506				
Course title		Pharmaceutical Technology and Drug Design				
Scheme and Credits		2L: 1T: 0P 3 credits	2	1	0	3
Pre- requisites		Pharmaceutical Chemistry				
Objectives of the course	1	Learn flow physicochemical properties / QSAR other computational techniques play role to design and optimize the structure of leads				
		∇				
Syllabus	1	Introduction to Historical and Modern Drug Discovery- Sources of drugs/leads, Serendipity, random screening, natural sources, analogue based design, Rational drug design, Techniques and tools in modern drug discovery, Introduction to QSAR, SBDD and LBDD • Concepts of privileged structures and chemical diversity	4	2		6
	200	Physicochemical and Biopharmaceutical Properties of Drug Substances: Lipinski rule of 5, Concept of toxicophores, Insilico calculation of log P, Modification of leads to incorporate suitable ADMET properties	2	1		3

3 2-D QSAR: History and development of 2-D QSAR, Parameters – lipophilicity and related		
parameters, electronic parameters, steric parameters, other parameters, Quantitative models - Hansch approach, Free Wilson analysis, the mixed approach, Statistical methods - regression analysis, partial least square and other multivariate statistical methods Design of test series in QSAR-Some examples of Hansch and other methods		6
Molecular Mechanics and Energy Minimization: General features of force fields, cross terms, force field parameterization, Energy minimization – non-derivative and derivative methods, applications of energy minimization Techniques of searching the conformational space: systematic search, Monte Carlo, Molecular dynamics and distance geometry		6
5 Docking by different techniques 2 1		3
Pharmacophore Modelling: Difficulties in deriving a 3D-pharmacophore Techniques – constrained systematic search, ensemble distance geometry, ensemble molecular dynamics and genetic algorithms Incorporating additional geometric features into a 3D pharmacophore 3D database searches using pharmacophores.		6
7 De Novo and fragment based ligand design and 3-D QSAR approaches CoMFA and CoMSIA, brief discussion on other methods like MSA, RSA and HASL methods, Limitations of QSAR	0	36
V	0	30
Suggested books/ reference1Burger's Medicinal Chemistry, Drug Discovery and Development. 7th Edition Volume 1-9. By Donald J. Abraham, David P. Rotella August 2010		
Practical Application of Computer-Aided Drug Design, Paul S Charifson, Ed., Marcel		
Dekker, Inc., 1997		
Textbook of Drug Design and Discovery, Pov'Krogsgaard-Larsen, Ulf Madsen, Kristian Stromgaard, 5th Ed., 2016. Taylor and Francis.		
Textbook of Drug Design and Discovery, Pov/Krogsgaard-Larsen, Ulf Madsen, Kristian Stromgaard, 5th Ed., 2016. Taylor and Francis.  4 3D QSAR in Drug Design: Theory, Methods and Applications, Kubinyi H Ed., Leiden ESCOM, 1993.		
Textbook of Drug Design and Discovery, PovlKrogsgaard-Larsen, Ulf Madsen, Kristian Stromgaard, 5th Ed., 2016. Taylor and Francis.  4 3D QSAR in Drug Design: Theory, Methods and Applications, Kubinyi H Ed., Leiden ESCOM, 1993.  5 Drug Development, Hamner C. E., Ed., 2nd Ed., CRC Press, Boca Raton, 1990		
Textbook of Drug Design and Discovery, PovlKrogsgaard-Larsen, Ulf Madsen, Kristian Stromgaard, 5th Ed., 2016. Taylor and Francis.  4 3D QSAR in Drug Design: Theory, Methods and Applications, Kubinyi H Ed., Leiden ESCOM, 1993.  5 Drug Development, Hamner C. E., Ed., 2nd		
Textbook of Drug Design and Discovery, PovlKrogsgaard-Larsen, Ulf Madsen, Kristian Stromgaard, 5th Ed., 2016. Taylor and Francis.  4 3D QSAR in Drug Design: Theory, Methods and Applications, Kubinyi H Ed., Leiden ESCOM, 1993.  5 Drug Development, Hamner C. E., Ed., 2nd Ed., CRC Press, Boca Raton, 1990  6 Advanced Drug Design And Development: A Medicinal Chemistry Approach, P N Kourounakis, E. Rekka, 1st ed., Taylor &		
Textbook of Drug Design and Discovery, PovlKrogsgaard-Larsen, Ulf Madsen, Kristian Scromgaard, 5th Ed., 2016. Taylor and Francis.  4 3D QSAR in Drug Design: Theory, Methods and Applications, Kubinyi H Ed., Leiden ESCOM, 1993.  5 Drug Development, Hamner C. E., Ed., 2nd Ed., CRC Press, Boca Raton, 1990  6 Advanced Drug Design And Development: A Medicinal Chemistry Approach, P N Kourounakis, E. Rekka, 1st ed., Taylor & Francis, Year: 1994		

	CO 3	Design new potential therapeutic molecules using structure based drug desig				
	CO 4	Design new potential therapeutic molecules using ligand based drug design				
			L	Т	P	Tot al
Course code		SRT4404				
Course title		Process Development for Fine Chemicals and API				
Scheme and Credits		2L: 1T: 0P 3 credits				
Pre- requisites		Introduction to Pharmaceutical Technology, Pharmaceutical Chemistry				
Objectives of the course	1	To understand the principles of chemical process development for API and fine chemical				
	2	Acquire the knowledge of Green Chemistry, Process Safety and Hazards				
		0,				
Syllabus	1	Principles of Process Development for API'S: Background information, Literature search methodologies for the development of API's and Intermediates, Selection of best route for the synthesis/manufacture of API (Green processes), Process safety, MSDS, Safety laboratory data	8	4		12
	2	Status of pharmaceutical industry: Status of bulk drugs, natural products and formulations in India vis-a-vis industrialized nations	2	1		3
	3	Chemical Technology of Selected APIs: Case studies with emphasis on rationale for selection of routes, raw materials, process control methods, pollution control procedures, polymorphs, safety, etc.	4	2		6
	4	Chemistry and Technology of Fine Chemicals: Introduction, Role of Catalysis, Atom Economy, Alternative Reagents and Catalysts, Multiproduct and Multipurpose Plants (MMPs), Reactors for fine chemicals, Safety Aspects of Fine Chemicals	4	2		6
	5	Selected Fine Chemical Technologies with examples: Alkylation, Halogenation, Oxidation, Reduction, Esterification, Nitration, and Hydrogenation	4	2		6
	6	Impurity Considerations: Introduction, Steps to optimizing reactions, Minimizing impurity formation by indentifying impurities first, Method development for separation, Synthesis and Isolation of impurities and their characterization	2	1		3
	X		24	12	0	36
Suggested books/ reference	Pr/s	Levenspiel, O. Chemical Reaction Engineering; 3rd ed.; John Wiley & Sons, New York (1999)				
	2	Gadamasetti, K., Process Chemistry in Pharmaceutical Industry; 1st ed.; CRC Press,				

		1. (2.2.2.)		
		London (1999)		
	<del>                                     </del>	Anderson N. C. Drestical Dresson Descenda		
	3	Anderson, N. G.; Practical Process Research		
		& Development: A Guide for Organic		
		Chemists; 2nd ed.; Academic Press, London		
		(2012)		
	4	Harrington, P. J.; Pharmaceutical Process		
		Chemistry for Synthesis: Rethinking the		
		Routes to Scale-Up; Wiley, London (2011)		
	5	A. Cybulski M.M. Sharma R.A. Sheldon J.A.		
		Moulijn;Fine Chemicals Manufacture:		
		Technology and Engineering, Elsevier		
		Science & Technology Books, (2001)		
		0		
Outcomes		On completion of the course, the students		
		will be able to		
	CO	Understand the principles of process design		
	1	along with selection of different routes.		
	СО	Get insights of underlying technologies in		
	2	the manufacturing of various APIs		
		^		
	CO	Differentiate between the bulk drugs and		
	3	fine chemicals and state their various		
		applications in industry and daily life		
	СО	Explore the process of manufacture of		
	4	variety of fine chemicals		

		variety of fine enermedia				
		¿)''	L	Т	Р	Tot al
Course code		SRT4405				aı
Course title		Natural Product based Pharmaceuticals				
Scheme and Credits		2L: 1T: 0P 3 credits	2	1	0	3
Pre- requisites		Pharmaceutical Chemistry, Process Development for Fine Chemicals and API				
Objectives of the course	1	To make students familiar with natural products, its important and total synthesis strategies				
	2	To make students familiar with ayurvedic product, its formulations and regulatory guidelines as well as government policies for the development				
		A				
Syllabus	1	Role of Natural Products in New Drug Discovery: few selected NPs, with different pharmacophore, its source, purification and its drug target interactions, Case studies of taxol, artemisinin, etc	2	1		3
	20	Potential uese of natural products: Plant- derived molecules for perfumery, cosmetic, agrochemicals, dyes and pigments	2	1		3
	P. C.	Overview of total synthesis and biomimetic synthesis of natural products with importance in drug discovery, Selected examples of retrosynthetic pathways of Natural products such as calanolide, colchicine, camptothecin	4	2		6

	4	Introduction to Ayurveda: History of Ayurveda and herbal drugs, Global Ayurvedic Medicine Market: Size, share, trend and forecast including organic herbs & extracts (NOP, USDA etc.)	4	2		6
	5	Ayurvedic/Polyherbal Formulations (PHF): Types of Ayurvedic formulations, single herb vs polyherbal formulations, Advantages and challenges associated with PHF, Preparation and detoxification methods for Ayurvedic formulations, CCRAS Guidelines for Ayurvedic Formulation	6	3		0
	6	Amendments in Drugs and Cosmetic Act for quality control of Ayurvedic medicines	2	1		ß
	7	Government policies and initiatives for development of Ayurveda: Introduction to Ministry of AYUSH and its Allied Organizations like Pharmacopceia Commission for Indian Medicine & Homoeopathy, Central Council for Research in Ayurvedic Sciences (CCRAS), National Medicinal plant board (NMPB). FSSAI Sustainability of Indian medicinal plants-CITES and Indian Governments.	4	2		9
		/	24	12	0	36
Suggested books/ reference	1	Lead Generation Approaches in Drug Discovery, Chapter 7: Role of Natural Products in Drug Discovery, Hugo Lachance, Stefan Wetzel, Herbert Waldmann, 2010, Wiley online library				
	2	Phytochemistry of Medicinal Plants, Vol. 29, J.T. Arnason, R. Mata, J. T. Romeo, 1995, Springer Science, Business Media New York				
	3	Total Synthesis of Natural Products, Jie Jack Li and E. J. Corey, 2012, Springer				
	4	Classics in Total Synthesis: Targets, Strategies, Methods, K.C. Nicolaou and E. J. Sorenson, 1996, Wiley-VCH				
	5	Biomimetic Organic Synthesis, Erwan Poupon and Bastien Nay, 2011, Wiley-VCH.				
	6	An introduction to Ayurveda, M.S. Valiathan, 2013, Orient Blackswan Private Limited - New Delhi				
	7	Handbook of Ayurvedic Medicines with Formulation, Eiri Board, 2009, Engineers India Research Institute				
	8	Regulatory and Pharmacological Basis of Ayurvedic Formulations, Kindle edition, Amritpal Singh, 2016, CRC Press				
	9	General guidelines for Drug development of Ayurvedic formulations, Guidelines Series-I, Central Council For Research In Ayurvedic Sciences, Ministry Of Ayush, Government of India, New Delhi, <a href="http://ayush.gov.in/">http://ayush.gov.in/</a>				
0-4	X	On completion of the course the study t				
Outcomes	СО	On completion of the course, the students will be able to  Rationalize the contribution of natural				
	1	products in new drug discovery				

Plan various approaches for efficient natural product synthesis including biomimetic synthesis, semi-synthesis and total synthesis and total synthesis.	Tot al			L	product synthesis including biomimetic synthesis, semi-synthesis and total synthesis  Express the global demand of Ayurvedic medicines  Execute the preparation of polyherbal formulations as per the standard Ayurvedic texts  Appreciate the importance of the regulatory guidelines of Government authorities	CO 3 CO 4 CO	
Course code	al			L	product synthesis including biomimetic synthesis, semi-synthesis and total synthesis  Express the global demand of Ayurvedic medicines  Execute the preparation of polyherbal formulations as per the standard Ayurvedic texts  Appreciate the importance of the regulatory guidelines of Government authorities	CO 3 CO 4 CO	
synthesis, semi-synthesis and total synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis synthesis	al			L	synthesis, semi-synthesis and total synthesis  Express the global demand of Ayurvedic medicines  Execute the preparation of polyherbal formulations as per the standard Ayurvedic texts  Appreciate the importance of the regulatory guidelines of Government authorities	3 CO 4	
Synthesis   Express the global demand of Ayurvedic medicines   CO	al			L	synthesis  Express the global demand of Ayurvedic medicines  Execute the preparation of polyherbal formulations as per the standard Ayurvedic texts  Appreciate the importance of the regulatory guidelines of Government authorities	CO 4	
CO Express the global demand of Ayurvedic medicines  CO Execute the preparation of polyherbal formulations as per the standard Ayurvedic texts  CO Appreciate the importance of the regulatory guidelines of Government authorities related to Ayurvedic medicines  L T P  Course code SRP4401  Course title Pharmaceutical Analysis Laboratory  Scheme and Credits OL:0T: 4P 2 credits O 0 4  Credits Chemistry Lab-I  requisites Objectives of 1 On performing the experiments, learner should be able to operate the instruments, understand its instrumentation, prepare solutions with accurate concentrations, measure the readings, calculate and interpret the results obtained  2 To familiarize the learner with the important aspects of accelerated stability testing and shelf life calculations  Syllabus 1 UV spectrophotometric estimation of two components formulation by simultaneous equation method, Eg Caffeine and Sodium benzoate injection  2 UV spectrophotometric estimation of formulation by Difference spectroscopy: Eg: Phenylephrine HCl ophthalmic solution  3 Assav of finished products by UV spectroscopy (any two), using A (1%, 1 cm)	al			L	Express the global demand of Ayurvedic medicines  Execute the preparation of polyherbal formulations as per the standard Ayurvedic texts  Appreciate the importance of the regulatory guidelines of Government authorities	CO 4	
Secute the preparation of polyherbal formulations as per the standard Ayurvedic texts   CO	al			L	medicines  Execute the preparation of polyherbal formulations as per the standard Ayurvedic texts  Appreciate the importance of the regulatory guidelines of Government authorities	CO 4	
CO   Execute the preparation of polyherbal formulations as per the standard Ayurvedic texts   CO   Appreciate the importance of the regulatory guidelines of Government authorities related to Ayurvedic medicines   L T P	al			L	Execute the preparation of polyherbal formulations as per the standard Ayurvedic texts  Appreciate the importance of the regulatory guidelines of Government authorities	CO 4	
formulations as per the standard Ayurvedic texts  CO Appreciate the importance of the regulatory guidelines of Government authorities related to Ayurvedic medicines  L T P  Course code SRP4401  Course title Pharmaceutical Analysis Laboratory  Scheme and Credits OL:0T: 4P 2 credits O 0 4  Credits Chemistry Lab-I  Pre- requisites Objectives of the course in the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the cour	al			L	formulations as per the standard Ayurvedic texts  Appreciate the importance of the regulatory guidelines of Government authorities	4 CO	
CO	al			L	Appreciate the importance of the regulatory guidelines of Government authorities	СО	
CO   S	al			L	Appreciate the importance of the regulatory guidelines of Government authorities		
Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Superior of Supe	al			L	guidelines of Government authorities		
Course code  SRP4401  Course title  Pharmaceutical Analysis Laboratory  Scheme and Credits  Ochemistry Lab-I  Course of the course  Chemistry Lab-I  On performing the experiments, learner should be able to operate the instruments, understand its instrumentation, prepare solutions with accurate concentrations, measure the readings, calculate and interpret the results obtained  To familiarize the learner with the important aspects of accelerated stability testing and shelf life calculations  Syllabus  1 UV spectrophotometric estimation of two components formulation by simultaneous equation method, Eg Caffeine and Sodium benzoate injection  2 UV spectrophotometric estimation of formulation by Difference spectroscopy: Eg: Phenylephrine HCl ophthalmic solution  3 Assay of finished products by UV spectroscopy (any two), using A (1%, 1 cm)	al			L		5	
Course code  Course title  Pharmaceutical Analysis Laboratory  Scheme and Credits  OL:0T: 4P 2 credits  Objectives of the course  Objectives of the course  1 On performing the experiments, learner should be able to operate the instruments, understand its instrumentation, prepare solutions with accurate concentrations, measure the readings, calculate and interpret the results obtained  2 To familiarize the learner with the important aspects of accelerated stability testing and shelf life calculations  Syllabus  1 UV spectrophotometric estimation of two components formulation by simultaneous equation method, Eg Caffeine and Sodium benzoate injection  2 UV spectrophotometric estimation of formulation by Difference spectroscopy: Eg: Phenylephrine HCl ophthalmic solution  3 Assav of finished products by UV spectroscopy (any two), using A (1%, 1 cm)	al			L	related to Ayurvedic medicines		
Course code  Course title  Pharmaceutical Analysis Laboratory  Scheme and Credits  OL:0T: 4P 2 credits  Objectives of the course  Objectives of the course  1 On performing the experiments, learner should be able to operate the instruments, understand its instrumentation, prepare solutions with accurate concentrations, measure the readings, calculate and interpret the results obtained  2 To familiarize the learner with the important aspects of accelerated stability testing and shelf life calculations  Syllabus  1 UV spectrophotometric estimation of two components formulation by simultaneous equation method, Eg Caffeine and Sodium benzoate injection  2 UV spectrophotometric estimation of formulation by Difference spectroscopy: Eg: Phenylephrine HCl ophthalmic solution  3 Assav of finished products by UV spectroscopy (any two), using A (1%, 1 cm)	al			L	V	'	
Course title Pharmaceutical Analysis Laboratory  Scheme and Credits  Objectives of the course  1 On performing the experiments, learner should be able to operate the instruments, understand its instrumentation, prepare solutions with accurate concentrations, measure the readings, calculate and interpret the results obtained  2 To familiarize the learner with the important aspects of accelerated stability testing and shelf life calculations  Syllabus  1 UV spectrophotometric estimation of two components formulation by simultaneous equation method, Eg Caffeine and Sodium benzoate injection  2 UV spectrophotometric estimation of formulation by Difference spectroscopy: Eg: Phenylephrine HCl ophthalmic solution  3 Assav of finished products by UV spectroscopy (any two), using A (1%, 1 cm)	al			_	0		
Course title  Pharmaceutical Analysis Laboratory  OL:OT: 4P  2 credits  O		4	0				
Course title  Pharmaceutical Analysis Laboratory  OL:OT: 4P  2 credits  O	4	4	0		\ \ \ \		
Course title  Pharmaceutical Analysis Laboratory  OL:OT: 4P  2 credits  O	4	4	0		SRP4401		Course code
Scheme and Credits  OL:OT: 4P  Chemistry Lab-I  Chemistry Lab-I  Chemistry Lab-I  Chemistry Lab-I  On performing the experiments, learner should be able to operate the instruments, understand its instrumentation, prepare solutions with accurate concentrations, measure the readings, calculate and interpret the results obtained  To familiarize the learner with the important aspects of accelerated stability testing and shelf life calculations  1 UV spectrophotometric estimation of two components formulation by simultaneous equation method and by absorbance ratio method, Eg Caffeine and Sodium benzoate injection  2 UV spectrophotometric estimation of formulation by Difference spectroscopy: Eg: Phenylephrine HCl ophthalmic solution  3 Assay of finished products by UV spectroscopy (any two), using A (1%, 1 cm)	4	4	0		11)	$\sqcup$	
Pre- requisites  Objectives of the course  1	4	4	0		Pharmaceutical Analysis Laboratory		Course title
Pre-requisites  Objectives of the course  1		-		0	OL:OT: 4P 2 credits		Scheme and
Pre-requisites  Objectives of the course  1				-	52.5.7 T		
Objectives of the course					V		Ciedits
Objectives of the course					Chemistry Lah-I	+	Pre-
Objectives of the course  On performing the experiments, learner should be able to operate the instruments, understand its instrumentation, prepare solutions with accurate concentrations, measure the readings, calculate and interpret the results obtained  To familiarize the learner with the important aspects of accelerated stability testing and shelf life calculations  1 UV spectrophotometric estimation of two components formulation by simultaneous equation method, and by absorbance ratio method, Eg Caffeine and Sodium benzoate injection  2 UV spectrophotometric estimation of formulation by Difference spectroscopy: Eg: Phenylephrine HCl ophthalmic solution  3 Assav of finished products by UV spectroscopy (any two), using A (1%, 1 cm)					Chemistry Lub i		
should be able to operate the instruments, understand its instrumentation, prepare solutions with accurate concentrations, measure the readings, calculate and interpret the results obtained  2 To familiarize the learner with the important aspects of accelerated stability testing and shelf life calculations  1 UV spectrophotometric estimation of two components formulation by simultaneous equation method and by absorbance ratio method, Eg Caffeine and Sodium benzoate injection  2 UV spectrophotometric estimation of formulation by Difference spectroscopy: Eg: Phenylephrine HCl ophthalmic solution  3 Assay of finished products by UV spectroscopy (any two), using A (1%, 1 cm)					On parforming the avacular rate leaves	1	
understand its instrumentation, prepare solutions with accurate concentrations, measure the readings, calculate and interpret the results obtained  To familiarize the learner with the important aspects of accelerated stability testing and shelf life calculations  1 UV spectrophotometric estimation of two components formulation by simultaneous equation method and by absorbance ratio method, Eg Caffeine and Sodium benzoate injection  2 UV spectrophotometric estimation of formulation by Difference spectroscopy: Eg: Phenylephrine HCl ophthalmic solution  3 Assay of finished products by UV spectroscopy (any two), using A (1%, 1 cm)						1	
solutions with accurate concentrations, measure the readings, calculate and interpret the results obtained  2 To familiarize the learner with the important aspects of accelerated stability testing and shelf life calculations  1 UV spectrophotometric estimation of two components formulation by simultaneous equation method and by absorbance ratio method, Eg Caffeine and Sodium benzoate injection  2 UV spectrophotometric estimation of formulation by Difference spectroscopy: Eg: Phenylephrine HCl ophthalmic solution  3 Assay of finished products by UV spectroscopy (any two), using A (1%, 1 cm)							tne course
measure the readings, calculate and interpret the results obtained  To familiarize the learner with the important aspects of accelerated stability testing and shelf life calculations  1 UV spectrophotometric estimation of two components formulation by simultaneous equation method and by absorbance ratio method, Eg Caffeine and Sodium benzoate injection  2 UV spectrophotometric estimation of formulation by Difference spectroscopy: Eg: Phenylephrine HCl ophthalmic solution  3 Assay of finished products by UV spectroscopy (any two), using A (1%, 1 cm)							
interpret the results obtained  To familiarize the learner with the important aspects of accelerated stability testing and shelf life calculations  1 UV spectrophotometric estimation of two components formulation by simultaneous equation method and by absorbance ratio method, Eg Caffeine and Sodium benzoate injection  2 UV spectrophotometric estimation of formulation by Difference spectroscopy: Eg: Phenylephrine HCl ophthalmic solution  3 Assay of finished products by UV spectroscopy (any two), using A (1%, 1 cm)							
To familiarize the learner with the important aspects of accelerated stability testing and shelf life calculations  1 UV spectrophotometric estimation of two components formulation by simultaneous equation method and by absorbance ratio method, Eg Caffeine and Sodium benzoate injection  2 UV spectrophotometric estimation of formulation by Difference spectroscopy: Eg: Phenylephrine HCl ophthalmic solution  3 Assay of finished products by UV spectroscopy (any two), using A (1%, 1 cm)							
aspects of accelerated stability testing and shelf life calculations  1 UV spectrophotometric estimation of two components formulation by simultaneous equation method and by absorbance ratio method, Eg Caffeine and Sodium benzoate injection  2 UV spectrophotometric estimation of formulation by Difference spectroscopy: Eg: Phenylephrine HCl ophthalmic solution  3 Assay of finished products by UV spectroscopy (any two), using A (1%, 1 cm)					interpret the results obtained		
aspects of accelerated stability testing and shelf life calculations  1 UV spectrophotometric estimation of two components formulation by simultaneous equation method and by absorbance ratio method, Eg Caffeine and Sodium benzoate injection  2 UV spectrophotometric estimation of formulation by Difference spectroscopy: Eg: Phenylephrine HCl ophthalmic solution  3 Assay of finished products by UV spectroscopy (any two), using A (1%, 1 cm)					To familiarize the learner with the important	2	
Syllabus  1  UV spectrophotometric estimation of two components formulation by simultaneous equation method and by absorbance ratio method, Eg Caffeine and Sodium benzoate injection  2  UV spectrophotometric estimation of formulation by Difference spectroscopy: Eg: Phenylephrine HCl ophthalmic solution  3  Assay of finished products by UV spectroscopy (any two), using A (1%, 1 cm)							
Syllabus  1  UV spectrophotometric estimation of two components formulation by simultaneous equation method and by absorbance ratio method, Eg Caffeine and Sodium benzoate injection  2  UV spectrophotometric estimation of formulation by Difference spectroscopy: Eg: Phenylephrine HCl ophthalmic solution  3  Assay of finished products by UV spectroscopy (any two), using A (1%, 1 cm)							
components formulation by simultaneous equation method and by absorbance ratio method, Eg Caffeine and Sodium benzoate injection  2 UV spectrophotometric estimation of formulation by Difference spectroscopy: Eg: Phenylephrine HCl ophthalmic solution  3 Assay of finished products by UV spectroscopy (any two), using A (1%, 1 cm)	+				Shell life calculations		
components formulation by simultaneous equation method and by absorbance ratio method, Eg Caffeine and Sodium benzoate injection  2 UV spectrophotometric estimation of formulation by Difference spectroscopy: Eg: Phenylephrine HCl ophthalmic solution  3 Assay of finished products by UV spectroscopy (any two), using A (1%, 1 cm)							
equation method and by absorbance ratio method, Eg Caffeine and Sodium benzoate injection  2 UV spectrophotometric estimation of formulation by Difference spectroscopy: Eg: Phenylephrine HCl ophthalmic solution  3 Assay of finished products by UV spectroscopy (any two), using A (1%, 1 cm)	4	4				1	Syllabus
equation method and by absorbance ratio method, Eg Caffeine and Sodium benzoate injection  2 UV spectrophotometric estimation of formulation by Difference spectroscopy: Eg: Phenylephrine HCl ophthalmic solution  3 Assay of finished products by UV spectroscopy (any two), using A (1%, 1 cm)					components formulation by simultaneous		
method, Eg Caffeine and Sodium benzoate injection  2 UV spectrophotometric estimation of formulation by Difference spectroscopy: Eg: Phenylephrine HCl ophthalmic solution  3 Assay of finished products by UV spectroscopy (any two), using A (1%, 1 cm)							
injection  UV spectrophotometric estimation of formulation by Difference spectroscopy: Eg: Phenylephrine HCl ophthalmic solution  Assay of finished products by UV spectroscopy (any two), using A (1%, 1 cm)							
2 UV spectrophotometric estimation of formulation by Difference spectroscopy: Eg: Phenylephrine HCl ophthalmic solution  3 Assay of finished products by UV spectroscopy (any two), using A (1%, 1 cm)							
formulation by Difference spectroscopy: Eg: Phenylephrine HCl ophthalmic solution  3 Assay of finished products by UV spectroscopy (any two), using A (1%, 1 cm)	4	1				2	
Phenylephrine HCl ophthalmic solution  3 Assay of finished products by UV spectroscopy (any two), using A (1%, 1 cm)	_	_				-	
Assay of finished products by UV spectroscopy (any two), using A (1%, 1 cm)							
spectroscopy (any two), using A (1%, 1 cm)					Phenylephinie aci ophthalmic solution		
	4	4				3	
og Maracotamol tablete Propranelel							
					eg. Paracetamol tablets, Propranolol		
tablets/Atenolol tablets/Hydrochlorothiazide							
tablets/Frusemide tablets/Albendazole					tablets/Frusemide tablets/Albendazole		
tablet/Rifampicin capsules (two examples)					tablet/Rifampicin capsules (two examples)		
4 Solubility determination of any 4	4	4				4	
drug/formulation by using UV spectroscopy	_						
3					D' 5		
5 Separation and identification of 8	•				Separation and identification of	5	
drug/Intermediate by TLC/Column	8	8					
chromatography		8					
		8			L Chromatography		
	8					6	
		8			Experiments based on HPLC eg.	6	
	8	4			Experiments based on HPLC eg. quantification of impurities in APIs	6	
	8				Experiments based on HPLC eg. quantification of impurities in APIs Gas Chromatography (GC) handling and	6	
111	8 4 4	4			Experiments based on HPLC eg. quantification of impurities in APIs Gas Chromatography (GC) handling and analyses of API intermediates	7,0	
formulation by using Gas Chromatography	8	4			Experiments based on HPLC eg. quantification of impurities in APIs Gas Chromatography (GC) handling and analyses of API intermediates Detection of residual solvent in the	6 7 8	
V.	8 4 4	4			Experiments based on HPLC eg. quantification of impurities in APIs Gas Chromatography (GC) handling and analyses of API intermediates Detection of residual solvent in the	70	
-     - J	8 4 4 4	4 4			Experiments based on HPLC eg. quantification of impurities in APIs Gas Chromatography (GC) handling and analyses of API intermediates Detection of residual solvent in the formulation by using Gas Chromatography	7(0 0	
spectra of any one drug.	8 4 4	4 4			Experiments based on HPLC eg. quantification of impurities in APIs Gas Chromatography (GC) handling and analyses of API intermediates Detection of residual solvent in the formulation by using Gas Chromatography Working of FTIR and Interpretation of IR	6 7 8 9	
	8 4 4 4	4 4			Experiments based on HPLC eg. quantification of impurities in APIs Gas Chromatography (GC) handling and analyses of API intermediates Detection of residual solvent in the formulation by using Gas Chromatography Working of FTIR and Interpretation of IR spectra of any one drug.	8	
10 Polarimetry: Different concentrations of 4	8 4 4 4	4 4 4			Experiments based on HPLC eg. quantification of impurities in APIs Gas Chromatography (GC) handling and analyses of API intermediates Detection of residual solvent in the formulation by using Gas Chromatography Working of FTIR and Interpretation of IR spectra of any one drug.	8	
	8 4 4 4	4 4 4			Experiments based on HPLC eg. quantification of impurities in APIs Gas Chromatography (GC) handling and analyses of API intermediates Detection of residual solvent in the formulation by using Gas Chromatography Working of FTIR and Interpretation of IR spectra of any one drug. Polarimetry: Different concentrations of	8	

	11	Assay of streptomycin injection/Salicylic acid by using Colorimetry ((Construction of calibration curve using linear regression analysis))			4	4
	12	Accelerated stability testing of any suitable drug/ formulation, Problems based on Arrhenius equation for shelf life calculations			4	4
		۸.	0	0	8	48
Suggested books/ reference	1	Current editions of IP, BP and USP				
	2	G. D. Christian, Analytical Chemistry, John Wiley & Sons, Singapore, reprint by Wiley India Pvt. Ltd				
	3	A. H. Beckett and J. B. Stenlake, Practical Pharmaceutical Chemistry, Part I and II, CBS Publishers and Distributors, India				
	5	J. Mendham, R. C. Denney, J. D. Barnes, M. J. K. Thomas, Vogel's Textbook of Quantitative Chemical Analysis, Pearson Education Ltd. D. G. Watson, Pharmaceutical Analysis –A				
		textbook for pharmacy students and pharmaceutical chemists, Churchill Livingstone Elsevier				
	6	R. M. Silverstein, F. X. Webster and D. J. Kiemle, Spectrometric identification of organic compounds, John Wiley & Sons, Inc. (Indian edition), New Delhi				
Outcomes		3				
Outcomes	60	December 100				
	CO 1	Record the absorbance and calculate concentration of analyte in formulation or as an API by use of A(1%, 1cm) by UV spectrophotometer				
	CO 2	Develop and optimize mobile phase composition for qualitative analysis by TLC and interpret qualitative analysis data by TLC				
	CO 3	Outline working and application of HPLC				
	CO 4	Outline working and application of GC				
	CO 5	Understand the sample preparation technique for FTIR spectroscopy, interpret the IR spectra to identify the functional groups				
		O			T =	
		<u> </u>	L	Т	Р	Tot al
Course code	0,	SRP4403				
Course title	0	Pharmaceutical Chemistry and Formulation Technology Laboratory				
Scheme and Credits	6,	0L:0T: 4P 2 credits	0	0	4	4
Pre- requisites		Pharmaceutical Chemistry, Formulation Technology and Drug Delivery				

	_					
Description		To train the students with respect to				
of the Course		practical aspects of Green Chemistry while				
		preparing the commonly used organic				
		compounds as a drugs and also train the students on advanced formulation				
		development technology				
Objectives of	1	To train the learner in preparation of typical				
Objectives of the course		monophasic liquid and semisolid				
the course		formulations and carry out their Q.C. tests,				
		and acquaint them with some biological				
		preparations available in market				
	2	To introduce the learner to various hands-or	1			
	-	experimental organic synthetic techniques				
		including column chromatography and thin				
		layer chromatography				
		m				
C. II. I	-	Fresheaties of envisionts Bullian envets for				_
Syllabus	1	Evaluation of excipients: Bulking agents for			4	4
		Flow properties, Bulk density, Tapped density, Carr's index, Hausner's ratio and				
		particle size and Disintegrating agents for				
		Swelling index				
	2	Preparation and evaluation of			4	4
	_	Transdermal/ophthalmic gels				·
	3	Preparation of Eye drops/ and Eye ointment	5		4	4
	4	Preparation of Creams (cold / vanishing			4	4
	-	cream)			_	7
	5	Preparation of Paracetamol paediatric elixir			4	4
	6	Representative examples of			4	4
		microencapsulation (Preparation and				-
		evaluation)				
	7	Solubilisation of drugs by at least two novel			8	8
		techniques				
	8	Evaluation of Glass containers (as per IP)			4	4
	9	Synthesis of two molecules/drug			1	12
		intermediates which may include three or			2	
		more steps to isolate, purify (chemical				
		methods and through chromatography) and				
		characterize the product from each step				
		01	0	0	8	48
		X			0	
		, U				
Suggested	1	Pharmaceutical Dosage Forms Vol. I & II,				
books/		Liebermann, New York, Marcel Dekker				
reference		(1996)				
	2	Latest Indian Pharmacopoeia, British				
		Pharmacopoeia, United States				
	3	Pharmacopoeia Pharmaceutical Production Facilities: Design				
	3	and Applications G. C. Cole, New York Ellis				
		Horwood (1990)				
	4 🗟	Husa's Pharmaceutical Dispensing Martin E				
	.0)	W. Easton Mack Pub. Co. (1971)				
	250					
		Transdermal Delivery of Drug A. Kydonieus				
	9	Transdermal Delivery of Drug A. Kydonieus Florida, CRC Press (1987)				
	200					
Outcomes	P. C					
Outcomes	CO	Florida, CRC Press (1987)				
Outcomes	1	Prepare transdermal and ophthalmic formulations.				
Outcomes		Florida, CRC Press (1987)  Prepare transdermal and ophthalmic				

	2	form		
C	O 3	Prepare and evaluate the monophasic/biphasic liquid dosage form		
C	3O 4	plan and develop organic synthetic routes for small organic compounds		
C	O 5	develop a set of separation and purification and structural characterization skills		

Special Subject	1- Biochemistry	and Microbiology
-----------------	-----------------	------------------

SRT3201 **Course code** 

**Course title** 

Biochemistry and Microbiology Introduction to biological science and bioengineering **Prerequisite** 

Scheme and 2 L: 1 T: 0 P 3 Credits

**Credits** 

Course title		Detailed contents	Total contact h
Biochemistry	1	Water and biomolecules. Introduction to blochemistry.	"
and Microbiology		Carbohydrates: Fundamentals of chemistry of carbohydrates. Monosaccharides, oligosaccharides and polysaccharides. Qualitative tests and color reactions. Quantitative analysis. Biosynthesis.	
		Lipids: Fatty acids, waxes, phospholipids, sphingolipids, sterols and terpenoids. Function and comparative distribution of lipids. Biosynthesis. Hydrogenation. Sap value, lodine value, Acid value. Biochemical tests. Lipoproteins and lipopolysaccharides.	
		Amino acids: pK, pl, structure and chemistry Protein: Structure and function. Globular and fibrous proteins. Enzymes and activity assay.	10
		Qualitative and quantitative tests for amino acids, proteins. Precipitation of proteins.  Solid phase peptide synthesis. Protein sequencing. Protein metabolism. Transmutation, SGOT/SGPT, deamination and	
		decarboxylation.  Vitamins and Co-enzymes: Structure and function. Qualitative and quantitative analysis.	
		DNA and RNA: Structure and function. DNA RNA Protein. Sequencing. Fluorescence tagging. Recombination and repair. Gene and control of gene expression. Operon.	
	2	History of microbiology (focus on microscopy). Types of microscopy (dark, fluorescence, atomic force, scanning,	2
	3	confocal etc.). Applications of microbiology.  Microorganisms: Major groups of microorganisms- bacteria, yeast, algae etc., their structure and properties.  Cell mobility and motility.	
		Different types of staining techniques (with reference to bacteria): Monochromatic staining, Gram staining, Acid fast staining, Capsule – flagella – spore – cell wall staining, Negative staining.	6
	4	Virus: Types and structure. Reproduction and cultivation. Cell culture: Isolation and identification of pure culture, cell preservation. Culture media, their composition, and their types.	
	10/02	Growth studies, microbial cell growth phases Introduction to biosafety. Sterilization methods. Aseptic technique. Biocontainment. Methods of Sterilization, disinfection, sanitation, and asepsis Mutation: Types and mechanisms. Mutagenic agents.	8
7		Evolution.	2
	6	Cell cloning: PCR and DNA amplification, restriction enzymes, DNA digestion, DNA ligation, transformation. Gibson assembly. Recombinant cells and selection markers. Vectors and plasmids. Competent cells. Reverse transcription. cDNA. Transfection.	8

#### CRISPR technique.

Total Suggested 5. Microbiology Concepts and Applications: M. J. Pelczar Jr., E. C. S. Chan text/referenc And N. R. Krieg Microbiology: An Introduction: Gerard J. Tortora, Berdell R. Funke and Christine L. Case 7. Lehninger: Principles of Biochemistry: David Nelson, Michael Cox

8. Outlines of Biochemistry: Eric Conn and Paul K Stumf

Harpers Biochemistry: Robert Murray, Daryl Granner

Special Subject 2- Introduction to Pharmaceutical Technology

Course code SRT3302 **Course title** Introduction to Pharmaceutical Technology **Prerequisite** Introduction to biological science and bioengineering, Biochemistry and Microbiology Scheme and 2 L: 1 T: 0 P 3 Credits

**Credits** 

e books

Course title		Detailed contents	Total contact
Course title		Detailed Contents	h
	1	General Aspects: Definition of a drug. Various drug categories such as	
	_	Prescription and OTC drugs	
		Drug nomenclature: Chemical name, Generic name, Prototype	
		A brief history of Pharma industry (From Dyes to Small Molecules to	
		Biologicals)	6
		Introduction about core subjects of Pharmacy: Pharmaceutics (including	
		Biopharmaceutics and Pharmacokinetics), Pharmacology, Pharmaceutical, and	
		analytical chemistry, Pharmacognosy	
		Laws governing the drugs and various compendia (official and non-official)	
	2	Medicinal Chemistry and Process Chemistry: Discovery of Hits and Leads,	
		Lead optimization, Introduction to Process chemistry industry and its brief	6
		overview	
	3	Pharmacology: Brief overview of Pharmacokinetic principles	_
		A brief overview of the mechanism of action of drugs	4
Introduction		A brief overview of Adverse Drug Reactions	
to	4	<b>Drug administration:</b> Brief overview of following routes of administration	
-		with their advantage and disadvantage	2
Pharmaceuti		Enteral: Oral, Sublingual, and Rectal Parenteral: Injections, Inhalation, Transdermal	2
cal		Topical routes: Ophthalmic, Nasal, Auditory	
Technology	5	Dosage forms of the drugs: Various definitions such as Formulation, Dosage	
	,	form, API, Excipient, Vehicles Brief overview of following dosage forms-	
		Solid, Liquid dosage forms for internal and external use, Inhalations, Aerosols,	6
		and suppositories	•
		Targeted Drug Delivery systems	
	6	Overview of drug development: Various aspects of preclinical studies in	2
		brief, Clinical trials, and its phases in brief	2
	7	Introduction to various commonly used analytical techniques and	
		operations in Pharma industry: Spectroscopic techniques, Chromatographic	4
		techniques, Extraction, and isolation techniques	•
	_	An overview of pharmaceutical engineering and various unit operations	
	8	Introduction to biological therapeutics: Peptides and proteins as drugs and	
	.(	ineir synthesis in brief	6
	7	Introduction of rDNA technology	
	0	Monoclonal antibodies Total	36
Suggested	10	Principles of Pharmacology, HL Sharma, KK Sharma, Paras Medical Publishe	
text/referenc	ν,	An introduction to pharmaceutical sciences: Production, chemistry, techniques	
e books	Λ.	technology, Jiben Roy, Woodhead Publishing Series in Biomedicine	, allu
E DOOKS	ν.	Real World Drug Discovery: A Chemist's Guide to Biotech and Pharmaceutica	l Research
1	Δ.,	Robert M. Rydzewski, Elsevier Science (2008)	i icocaicii,
	,	RODOR IVI. RYUZOWSKI, EISOVICI SCICILO (2000)	

**Special Subject 3- Nutrition and Nutraceuticals** 

**Course code SRT3403** 

**Course title Nutrition and Nutraceuticals**  Total

Prerequisite	Introduction to biological science and bioengineering, Biochemistry and Microbiology	
Scheme and Credits	2 L: 1 T: 0 P 3 Credits	
Course title	Detailed contents	Total contact h
	Classification of food components based on nutritional value, nutritional assessment of carbohydrates, proteins, and fats, recommended dietary intake, acceptable dietary intake, nitrogen balance, protein efficiency ratio, net protein utilization.  Basics of energy balance - Basal Metabolic Rate (BMR), Body Mass Index (BMI), and Standard Dynamic Action (SDA) with special reference to the nutraceutical industry.	6
	Defining nutraceuticals. Nature, type, and scope of nutraceuticals compounds and their classification based on chemical and biochemical nature with suitable and relevant descriptions.	6
	descriptions.  Disease and Nutrition:  Functions of dietary fiber (soluble and insoluble) in control of certain disease conditions like diabetes, cancer, heart diseases etc. Effect of drugs on ingestion, digestive absorption &	6
Nutrition and Nutraceutical s	metabolism of nutrients, Effect of food nutrients & nutritional status in drug dosage & efficacy.  4 Functional Foods and their applications: Role of Isoprenoids, Isoflavones, Flavonoids, carotenoids, Tocotrienols, polyunsaturated fatty acids, sphingolipids, lecithin, choline. Terpenoids, whey, and soy protein. Vegetables, seeds, cereals, seafood, milk, and dairy products as functional foods.	9
	Probiotics and prebiotics.  Role of nutraceuticals with special reference to diabetes mellitus, hypertension, hypercholesterolemia, cancer, glands in the prevention and treatment.  5 Nutraceutical evaluation and testing: Biological testing and bioassays, preclinical testing, and clinical trials.  Quality corurol and quality assurance of nutraceuticals.  Marketing of nutraceuticals.  6 Nutritional genomics: Plants as bioreactors as a tool for the	4
	production of Nutraceuticals. 'Tailor-made' carbohydrates and lipids of plant and non-plant origin. Transgenic plants for the large-scale production of proteins for pharmaceutical and industrial uses. Commercial transgenic crops like herbicide-resistant soybean, maize, vegetables, fruit crops, golden rice.	5
Suggested text/referenc e books	Total  10. Brigelius-Flohé, J & Joost HG. Nutritional Genomics: Impa Health and Disease. Wiley VCH. 2006.  11. Cupp J & Tracy TS. 2003. Dietary Supplements: Toxicolog Clinical Pharmacology. Humana Press.  12. Gibson GR & William CM. Functional Foods - Concept to Productional Losso JN. Angi-angiogenic Functional and Medicinal Foods. CRG	y and ct. 2000.

## **Special Subject 4- Pharmaceutics and Pharmacology**

Pharmaceutical Press (2002).

14. Robert E.C. Wildman Handbook of Nutraceuticals and Functional Foods, CRC, 2006.15. L. Rapport and B. Lockwood Nutraceuticals, 2nd Edition,

Course code SRT3404

### Course title Prerequisite

Pharmaceutics and Pharmacology Introduction to biological science and bioengineering, Introduction to Pharmaceutical Technology 2 L: 1 T: 0 P 3 Credits

# Scheme and Credits

Credits		Total
Course title	Detailed contents	contact
1	History of Pharmacy Origin & Development of the pharmacopoeia – IP/BP/USP	3
2	Introduction to the monograph, parts of the monograph Introduction to pre-formulation and formulation studies Quality control and Quality assurance, Introduction to GMP	4
3	and cGMP, quality by design (QbD), and quality by test (QbT) Introduction to unit operations involved in pharmaceutics: Size reduction, size separation, mixing and homogenization,	4
4	filtration, extraction, sterilization, and solubilization Formulation and scale-up considerations in the development of the following dosage forms: Solutions, syrups, elixirs, and tinctures Suspensions and emulsions	·
	Ointments, creams, lotions, and gels Tablets, capsules (soft and hard gelatin) Medical gases and aerosols Injectables and eye drops Pessaries and suppositories	8
Pharmaceuti 5 cs and	Stability Studies: Introduction to ICH climate zones and ICH guidelines for stability testing [Q1A, Q1B, and Q1C],	3
Pharmacolog y 6	Stabilization of dosage forms Introduction to the human body, organization of the human	
	body Different systems of the human body Blood and lymphatic system, structure and function of the kidney, respiratory system, digestive system, endocrine system, nervous system (Neurotransmission, adrenergic and cholinergic system, CNS, ANS, and PNS), and cardiovascular system	4
7	General pharmacology (ADME, routes of administration, and MOA)	2
8	Hematinic, thrombolytics, coagulants/anticoagulants Antidiabetic drugs	
	Drugs acting on the nervous system Drugs used in hypertension, vasodilator Analgesics and narcotics Anesthetics	6
9	Anticancer drugs Antimicrobials and anti-infectives	2
10	Gene therapy	1
	Total	36
Suggested text/referenc e books	<ol> <li>Pharmaceutical Dosage Form And Drug Delivery Systems, How Ansel, Nicholas G. Popovich, Lord V. Alien, 6th edition, 1995, B.I.Waverly Pvt. Ltd., New Delhi</li> <li>Remington-The Science And Practice Of Pharmacy (Vol.1&amp; 2), I B.Troy, 21st edition,2006, Lippincott Williams &amp;Wilkins</li> <li>Tutorial Pharmacy J.W. Cooper, Colin Gunn, 4th edition,1950, S Pitman &amp; Sons Ltd., London Pharmaceutics: The Science Of Doform Design, Michael E. Aulton, 1998, Churchill-Livingstone Dermatological Formulations, B. W. Barry, 198, New York, Marc Dekker</li> </ol>	David ir Isaac sage

19. ICH Guidelines

- 20. Tortora's Principles of Anatomy and Physiology, Gerard J. Tortora
- 21. Arthur C. Guyton and John E. Hall, Textbook of Medical Physiology, 13thedition, W. B. Saunders Company, 2016
- 22. Essentials of Medical Pharmacology, K. D. Tripathi

Special Subject 5- Pharmaceutical Analysis

Course code

SRT3405

**Course title** 

**Pharmaceutical Analysis** 

Prerequisite Introduc

Introduction to Pharmaceutical Technology, Pharmaceutics and

Pharmacology

Scheme and

2 L: 1 T: 0 P

3 Credits

Credits		2 El 2 II o I	
		Batallad as utant	Total
Course title		Detailed contents	contact h
Pharmaceuti cal Analysis	1	Introduction: Difference between qualitative and quantitative analysis. Pharmacopoeial monograph, literature collection, data handling, and expression of analytical results -	3
	2	documentation and record-keeping The theoretical basis of quantitative analysis Equivalent weight, Standard volumetric solutions. Normality, molarity, molality, formality, characteristics of a primary	3
	3	standard; Secondary standard, Analytical method validation (as per USP and ICH guidelines): Accuracy, Precision, Limit of detection, Limit of quantification,	3
	4	Linearity, Range, Robustness, Ruggedness, causes of errors Refractometry and Polarimetry: theory, instrumentation, and	1
	5	application UV Visible Spectroscopy: Introduction to the interaction between electromagnetic radiation and matter, absorption of radiation by molecules, a chromophore Definition - auxochromes, bathochromic shift, hypsochromic shift; Hyperchromism and hypochromism, Effect of solvent on	1
	6	absorption spectra Beer and Lambert's law, limitation of Beer's law, application of Beer's law to single component analysis and multi-component systems Instrumentation of UV visible spectrophotometer, single beam UV visible spectrophotometer, and double beam spectrophotometer Infrared spectroscopy: Molecular structure and infrared spectra, vibrational	4
	·	transition frequency-structure correlations.  Instrumentation-discussions of light sources, frequency selector, Intensity control detectors, samples, preparation,  Near IP spectroscopy – Different applications in the pharmaceutical industry,	3
	7	sampling techniques; Difference between FTIR and Dispersive IR Fluorescence spectroscopy: Theory of fluorescence phenomenon-origin of fluorescence and phosphorescence. Molecular structure and fluorescence; Quantitative fluorescence analysis; Practical fluorescence analysis:	2
	80	Application of fluorescence analysis to drug: Instrumentation Chromatography: Terminologies-mobile phase, stationary phase, normal phase, reverse phase, isocratic elution, gradient elution, retention time, theoretical plate, HETP,	
7	20	resolution Types of chromatographic techniques: Adsorption, ion- exchange, affinity, size exclusion Instrumentation: pumps, injector, detector Gas chromatography and HPLC	5
	9	Nuclear magnetic resonance spectroscopy: principle, ¹ H NMR, chemical shift, and brief instrumentation	2
	10	Mass spectrometry (MS): principle, methods of ionization, types of Mass spectrophotometer, application	3

		MS analysis of biologics: MALDI	
	11	Thermal Analysis: TGA, DSC	_
		Their principle and application	2
	12	Analysis of Biologics: DNA sequencing, Protein sequencing	
		Enzyme assay	3
		ELISA, southern blotting, and northern blotting techniques	,
	6		2
	6	High throughput screening, flow cytometry Total	2 36
Cummastad		10 201	
Suggested		23. Practical pharmaceutical chemistry, 4tnEdn. (Part II)-Beckett, A	λ.Π α
text/referenc		Stenlake, J.B.	
e books		24. Pharmaceutical analysis-Lee, David&Webb, Michael	
		25. Vogel's textbook of quantitative chemical analysis, 6th edn - M	ienanam,
		26. Vogel's qualitative inorganic analysis – Svehla G	
		27. Introduction to Spectroscopy – Pav a	
		28. Pharmaceutical Analysis by Skoog and West	
		29. Analytical chemistry, 6th edn Christian, Gary	
		30. Organic Spectroscopy by William Kemp	
		31. Indian Pharmacopoeia	
		32. United States pharmacopoeia	
	harma	aceutical Additives and Excipients	
Course code		SRT3506	
Course title		Pharmaceutical Additives and Excipients	_
Prerequisite		Introduction to Pharmaceutical Technology, Pharmaceutic	s and
		Pharmacology, Pharmaceutical Analysis	
Scheme and		2 L: 1 T: 0 P 3/Credits	
Credits		\	
		<i>M</i>	Total
Course title		Detailed contents	contact
		.0	h
	1	Pharmaceutical additives/excipients, their purposes,	
		properties of additives, different classes of excipients	4
		Pharmaceutical processing aid	

Course title	Detailed contents co	ntact h
	1 Pharmaceutical additives/excipients, their purposes, properties of additives, different classes of excipients	4
	Pharmaceutical processing aid Functions, features, scale-up considerations, and examples of the following:	
Pharmaceuti cal Additives and	Fillers Rinders Disintegrants Coating agents Sorbents	12
Excipients	3 Drug-excipient compatibility	4
	4 Package-excipient interactions	4
	5 Functional excipients affecting drug release profile with examples	4
	6 Excipient stability	4
	Regulatory requirements: FDA, IPEC, and pharmacopoeial	4
	1	36
Suggested	33. Remington-The Science And Practice Of Pharmacy (Vol.1& 2), Davi	d
text/referenc	E. Troy, 21st edition, 2006, Lippincott Williams & Wilkins	
e books	34. Tutorial Pharmacy J.W. Cooper, Colin Gunn, 4th edition,1950, Sir Isa Pitman & Sons Ltd., London Pharmaceutics: The Science Of Dosaga	
	Form Design, Michael E. Aulton, 1998, Churchill-Livingstone	_
	Dermatological Formulations, B. W. Barry, 198, New York, Marcel	
	Dekker	
	35. IPEC Guidelines	
	36. Indian Pharmacopoeia	
	37. United States pharmacopoeia	

Special Subject 7- Medicinal Chemistry and Natural Products

Course code SRT3507

Course title Medicinal Chemistry and Natural Products

Prerequisite Introduction to biological science and bioengineering and

Pharma minor courses

Scheme and Credits		2 L: 1 T: 0 P 3 Credits	
Course title		Detailed contents	Total contact
Medicinal Chemistry and Natural Products	2 3	Introduction to Medicinal Chemistry: Definitions and explanation of terms used in Medicinal Chemistry (hits, lead, lead development, molecular libraries, toxicity studies, high throughput screening, ADME etc.), the nomenclature of drugs Introduction to modern drug discovery- rational design, molecular modeling, genetics, and DNA technology Drug targets: concepts of drug binding, affinity, selectivity. Discuss the following with examples.	<b>h</b> 1 2
		Enzymes as drug targets: concept of enzyme, apoenzyme, holoenzyme, coenzyme, cofactor Targeting human enzymes, targeting enzymes selective to pathogens  Receptors as drug targets: types and properties of receptors Ligand-receptor interaction, types of bonds in the interactions, role of structure and conformation  Types of inhibitions (competitive, non-competitive,	6
	4	uncompetitive Allosteric interaction Target identification methods: Brief overview of target identification, biopharmaceutical therapy, identification of druggable targets by proteome investigation, cellular screening, intracellular receptors and enzymes, a brief overview of drug metabolism and toxicity	3
	5	Strategies in hit/lead discovery a) natural product-based b) biology-oriented synthesis c) in silico screening d) fragment-based drug design	2
	6	Lead optimization: lead likeness and drug-likeness, determination of compound, biological, biochemical properties, metabolic information using the internet, homologs.	3
	7	SAR, QSAR: the concept of SAR, effects of substituents and functional groups, methodology of QSAR, practical applications like compound library design, profiling, acquisition, screening.  Drug design: Ligand-based (pharmacophore modeling) and receptor-based drug design (protein crystallography, molecular docking)	4
	8	Medicinal natural products: Scope of the subject, Source of the drug of natural origin, Organized and unorganized drugs Preparation of drugs for commerce and quality control	1
		Extraction and isolation of plant drugs: conventional and modern techniques used in extraction and separation of phytoconstituents.  Phytochemistry: Chemical constituents in the production of	3
7	2.Qx	plants (carbohydrates, protein enzymes, lipids, alkaloids, glycosides, steroids, tannins, terpenoids, flavonoids, plant pigments, etc.). Discuss at least 1 example from each of the above classes	6
	11 12	Biosynthesis approach: Building blocks and metabolic pathways for the formation of secondary metabolites. Extraction and isolation of plant drugs: conventional and modern techniques used in extraction and separation of	2

phytoconstituents.

13 Recent advances in phytopharmaceuticals (a topic of current interest)

Total

1 36

#### Suggested text/referenc e books

- 38. Foye's Principles Of Medicinal Chemistry W. O. Foye, Lippincott Williams & Wilkins, 6th edition, 2008.
- 39. Textbook of Medicinal And Pharmaceutical Chemistry Wilson And Gisvold, Lippincott Williams & Wilkins, Philadelphia,11
- 40. The Organic Chemistry of Drug Design and Drug Action. R. B. Silverman Elsevier Publication
- 41. Dewick P.M., Medicinal Natural Products- A Biosynthetic Approach,2 edition/2002, John Wiley & Sons Ltd
- 42. Trease & Evans, Textbook of Pharmacognosy, 15
- 43. The Merck Index, Merck Research Laboratories, 13
- 44. Quality Standards of Indian Medicinal Plants, all volumes, ICMR
- 45. Indian Medicinal Plants, Kiritikar and Basu

#### Special Lab 1

- 1. API Synthesis
- 2. API purification and FT-IR, melting point analysis
- 3. Co-crystallization of API, analysis using XRD
- 4. Analysis of API and cosolvent (used in co-crystallization) by UV-VIS spectroscopy
- 5. Study of effect of co-crystallization on solubility
- 6. Natural product extraction using Soxhlet assembly
- 7. Enzymatic process for API intermediate synthesis and kinetic study using HPLC
- 8. Aseptic operation and sterilization

#### Special Lab 2

- 1. Antibiotic susceptibility testing using disc diffusion assay
- 2. Fermentative protein synthesis and protein purification using affinity chromatography
- 3. Granulation using granulator and hot melt extruder
- 4. Solid dosage form preparations
- 5. Semisolid and powder preparations
- 6. Quality control testing of various dosage forms

Energy

SP #	Course Code (IOCB)	Course Code (MARJ)	Туре	List of Subjects
1	SET330 2	SET430 2	Theory	Conventional Energy and Utilization
2	SET330 3	SET430 3	Theory	Renewable Energy Systems
3	SET340 3	SET440 3	Theory	Combustion and Chemistry of Fuels
4	SET340 4	SET440 4	Theory	Energy Conversion and Storage
5	SET340 5	SET440 5	Theory	Advanced Thermodynamics of Energy Systems
6	SET350 6	SET450 6	Theory	Materials for Energy Applications
7	SET350 7	SET450 7	Theory	Energy Management
1	SEP330 1	SEP430 1	Laborator y	Energy Lab-l
2	SEP340 2	SEP440 2	Laborator y	Energy Lab-II

		$\tilde{G}$	L	T	Р	Tot al
Course code		SET4302				
Course title		Conventional Energy and Utilization				
Scheme and Credits		2L: 1T: 0P 3 credits	2	1	0	3
Pre- requisites		Material and Energy Balance Calculations, Chemical Engineering Thermodynamics II, Physics II and Chemistry II				
Objectives of the course	1	To present an overview of energy generation, distribution and control systems				
	2	To impart understanding of sources of energy and its significance				
						_
Syllabus	1	Basics of energy: Different forms of energy, energy conversion process, indirect and direct energy conversion; Different energy sources; Conventional energy systems: engines, power plants, various methods of power generation;	2	1		3
	2	Energy Distribution: Power systems: Load and load duration curves, selection of generating units, Introduction to power generation, transmission and distribution, power systems losses and compensation, High voltage AC (HVAC) and High voltage DC (HVDC) transmission; Interconnected grid system	4	2		6
	3 0	Basics of fuels: Modern concepts of fuel, Solid, liquid and gaseous fuels, composition, basic understanding of various properties of solid fuels - heating value, ultimate analysis, proximate analysis, ash deformation points; liquid fuels - heating value, density, specific gravity, viscosity, flash point, ignition point (self, forced), pour point, ash composition and gaseous fuels	4	2		6

	4		Coal as a source of energy: Coal reserves -	4	2		6
			World and India, Coal liquefaction process,				
			various types of coal and their properties,				
			Origin of coal, composition of coal, analysis				
			and properties of coal			P	
	5		Petroleum as a source of energy and	6	3		9
			chemicals:				
			Origin, composition, classification of				
			petroleum, grading of petroleum;				
			Processing of petroleum: Distillation of crude				
			petroleum, petroleum products, purification of				
			petroleum products - thermal processes,				
			catalytic processes, specifications and				
			characteristics of petroleum products.				
			Natural Gas				
	6		Nuclear Energy	4	2		6
	<u> </u>		Trueisa. Inc.gy	24	12	0	36
Suggested	1		Nag P. K. (2014); Basic and Applied				
books/	_		Thermodynamics, McGraw Hill.				
reference			memodynamics, mediaw min.				
· C.C.C.ICC	2		Theraja B. L. and Theraja A. K. (1998); A Text				
	-		Book in Electrical Technology, S. Chand and				
			Co.				
	3		Sarkar S. (2010); Fuels and Combustion, Third				
	3		Edition, CRC Press				
	4		Jaccard M. (2006); Sustainable Fossil Fuels,				
	4						
	-		Cambridge University Press				
0			On a manufaction of the accuracy the actual order will				
Outcomes			On completion of the course, the students will				
	-		be able to				
	CO		List forms of energy, conversion processes				
	СО		Categorize renewable and non renewable				
	2		energy sources				
	СО		Estimate calorific value from fuel analyses				
	3		Ü				
	СО		Explain energy generation and distribution				
	4		systems				
			^	L	Т	Р	Tot
			8	-	_	_	al
Course			SET4303				<u> </u>
code			700				
Course title			Renewable Energy Systems				
Scheme			2L: 1T: 0P 3 credits	2	1	0	3
and Credits			U		_		
Pre-			Material and Energy Balance Calculations,				
requisites			Chemical Engineering Thermodynamics II,				
. 044151103			Physics II and Chemistry II				
Description			This course aims to develop understanding of				
of the		. `	renewable energy sources				
Course		λ	Tenemable energy bodices				
Objectives	1	0.	To examine the principles of sustainability and				
of the	-	(O	renewable energy				
course		~					
300.50	2	0	To create an understanding of solar energy				
	- 4		conversion including photovoltaic (PV) and				
	C	)	solar thermal conversion systems.				
	30		To examine the tradeoffs with use of biomass				
	100		based energy				
	Α.		buseu energy				
Syllabus	1		Bioenergy:	2	1		3
Jynabus	*		World and India's bioenergy scenario,	2	-		3
			production of biomass, photosynthesis,				
			assessment of biomass resources, Biomass				
	1		assessifient of biolilass resoulces, biolilass				

	3	Energy and Fuels from Biomass, Wiley India  Wind Energy Handbook, Second Edition, by				
TOTOTOTICE	2	Mukunda H. S. (2011); Understanding Clean				
books/ reference	1	Edition, Academic press				
Suggested	2	Sorensen B. (2010); Renewable Energy, Fourth				
	V		24	12	0	36
	*	limitations and optimization, and environmental impact of wind energy conversion devices.				
		Resource assessment, power, and energy calculations, aerodynamic analysis, development of the Betz limit, design				
	7	economics; Wind energy conversion, tidal energy conversion	4	2		6
		solar collector: optical design of concentrators, solar water heaters, solar dryers; Solar thermal power generation and				
		system; Design and components and flat plat collector; Development of solar thermal collectors; Solar cooling and refrigeration; Concentrating				
		systems: Solar flat plate collector, Concentrating collector, Solar cooker, Solar pond, Solar passive heating and cooling				
	6	economics Solar thermal conversion: Theory and Basics. Introduction to different solar thermal energy	2	1		3
		solar cell; Photovoltaic system: Component and configurations; off grid and grid connected PV systems, PV system design and				
	3	conversion; Solar cell basics and materials; Different solar cell technologies: Crystalline silicon solar cell, Thin Film solar cell, Tandem	4	2		O
	5	solar radiation on nonzontal and tilted surfaces, Solar radiation measurement devices, Solar radiation data analysis  Photovoltaic: Principle of photovoltaic	4	2		6
		diagram; Shadow determination, Solar spectrum, Effect of earth atmosphere on solar radiation, Measurement and estimation of solar radiation on horizontal and tilted				
	4	based power generation, IGCC, cost benefit analysis, case studies  Solar Radiation, Solar angles, Sun path	4	2		6
		Biomass Gasifiers: types of gasifiers and mechanisms of operation, gasifier product gas analysis, gasifier stoves, heat and mass balance of gasification system; Gasification based power generation. IGCC cost benefit				
		Pyrolysis, Carbonization, Charcoal production, Biomass gasification, Liquefaction; Torrefaction and pyrolytic oil, typical composition				
	3	benefit analysis of biogas for cooking, lighting, power generation applications, Case studies  Thermochemical conversion:	4	2		6
		mechanism and technology, Design of biogas plants, biogas slurry utilization and management, biogas applications; Cost				
	2	Advanced bio-systems and biofuel production  Biochemical conversion: Bio-methanation: biogas production	4	2		6
		composition and energy content; Biofuels, types of biofuels and production technologies;				

		Tony Burton. 2011				
	4	Wind Energy Explained, Theory Design				
	•	and Application, Second Edition, by James				
		Manwell. 2009.				
	5	Solar Energy Conversion Systems (Elsevier,				
		Academic Press), 2013 by J. R. S. Brownson				
		7.66661116 1 1633/, 2013 by J. N. S. BIOWIISOII				
Outcomes		On completion of the course, the students will				
- 4 COINES		be able to				
	СО	Apply principles of mathematics, science and				
	1	engineering to the analysis of solar wind and				
		biomass power				
	СО	Design systems for harnessing biomass, solar,				
	2	wind and hydrokinetic energy				
	co	Integrate the considerations of economic,				
	3	environmental, sustainability, health and				
		safety, social, and political factors for analysis				
		of renewable energy systems				
		, strenemaste energy systems		-	Б	Tet
		.5	L	Т	Р	Tot
Course		SET4403				al
		3E144U3				
code Course title		Combustion and Chemistry of Fuels				
		2L: 1T: OP 3 credits	2	-	0	2
Scheme		ZL: 11: UP 3 credits	2	1	0	3
and Credits Pre-		Momentum Transfer, Mass Transfer, Chemical				
requisites		Engineering Thermonynamics II				
Description		× .				
of the						
Course	-	Dravido fundamental knowledge of the				
Objectives of the	1	Provide fundamental knowledge of the				
		chemistry, composition and upgrading of fuels				
course	2	Fundamental understanding of combustics				
	4	Fundamental understanding of combustion				
		from thermodynamic, kinetic and transport perspectives				
		perspectives				
Cyllobus	-	Nature and preparties of faceil and other finals	4	2		6
Syllabus	1	Nature and properties of fossil and other fuels,	4	2		6
		including aerospace, in relation to use;				
		preparation of fuels; by-products; fuel				
	-	analysis	Α	2		6
	2	Coal: Action of heat on coal, caking and coking	4	2		6
		properties of coal; Processing of coal: Coal				
		preparations, briquetting, carbonization,				
		gasification and liquefaction of coal, Coal derived chemicals.				
	3	Combustion thermodynamics	4	2		6
	3	Combustion thermodynamics  Combustion mechanism, elementary steps,	4			0
		chain reaction				
		Adiabatic Flame Temperature, Equilibrium				
		constant and free energy				
	4	Combustion Kinetics	4	2		6
	🔭	Elementary, consecutive and parallel reactions	_			J
		Transition state theory, collision theory of				
		reaction rates				
		Steady state approximation, concept and				
	- 0	applications				
	201	Rate determining step, concept and				
	X	applications				
	2,	Contribution of Transport Phenomena to	4	2		6
	9	Combustion	4			0
		Combustion   Combustion chamber modelling, laminar				
		premixed flames, laminar diffusion in flames,				
		turbulent flames basics, coupled heat and				
		turbulent names basics, coupled neat and				

			mass transfer, ignition and heterogeneous combustion				
	6		Emissions Thermodynamic, kinetic analysis of emissions and control of CO, NOx, SOx, biochar emissions, coal pyrolysis	4	2		6
				24	12	0	36
Suggested books/ reference	1		"An Introduction to Combustion: Concepts and Applications," Third Edition, by Stephen R. Turns, McGraw-Hill (2012)				
	2		Principles of Combustion , Kenneth Kuan-yun Kuo				
Outcomes			On completion of the course, the students will be able to				
	CO 1		Apply knowledge to estimate heating value, and other characteristics of coal based fuels				
	CO 2		Develop or validate model for combustion based on available data				
	CO 3		Optimize process to minimize emissions				
			, 0'	L	Т	Р	Tot al
Course code			SET4404				
Course title			Energy Conversion and Storage				
Scheme			2L: 1T: 0P 3 credits	2	1	0	3
and Credits Pre-			Chemical Engineering Thermodynamics II,				
requisites			Conventional Energy Technology				
Description of the Course							
Objectives of the	1		To expose students to energy storage chemistry particularly for storage of electricty.				
course	2		Provide fundamental knowledge of the energy storage devices and systems				
	3		To review conversion of energy in form of fuels				
			.0		_		
Syllabus	1		Different types of energy storage; Mechanical, Chemical, Electrical, Electrochemical, Biological, Magnetic, Electromagnetic, Thermal; Comparison of energy storage technologies.	3	1		4
	2	1	Thermal energy storage: principles and applications, Sensible and Latent heat, Phase change materials; solar energy and thermal energy storage, case studies.	2	1		3
	3	00	Flywheel and compressed air storage; Pumped hydro storage; Hydrogen energy storage	2			2
	4	70	Capacitor and super capacitor, Electrochemical Double Layer Capacitor: Principles, performance and applications.	3	1		4
	PA		Electrochemical energy storage: Battery – fundamentals and technologies, characteristics and performance comparison: Lead-acid, Nickel-Metal hydride, Lithium Ion; Battery system model, emerging trends in batteries.	6	3		9
	6		Hydrogen as energy carrier and storage; Hydrogen resources and production; Basic principle of direct energy conversion using	4	2		6

	т—		fuel cells				
	7		Fuel cell types: AFC, PEMFC, MCFC, SOFC,	4	2		6
			Microbial Fuel cell;				
			Fuel cell performance, characterization and				
			modeling; Fuel cell system design and				
			technology, applications for power and transportation.				
	8		Application of Energy Storage: Food	2	0		2
			preservation, Waste heat recovery, Sclar	_			_
			energy storage				
			OV.				
	-		^0	26	10	0	36
Suggested	1		Dincer I., and Rosen M. A. (2011): Thermal				
books/	-		Energy Storage: Systems and Applications,				
reference			Wiley				
	2		Huggins R. A. (2015); Energy Storage:				
			Fundamentals, Materials and Applications.				
			Springer				
Outcomes	+	$\vdash$	On completion of the course, the students will				
Juccomes			be able to				
	СО		Describe criteria used to determine				
	1		performance, advantages, and disadvantages				
	co		Perform efficiency analysis of energy storage				
	CO		systems Recommend optimal (appropriateness, cost				
	3		and sustainability) solutions to any potential				
			energy storage application				
			N.	L	Т	Р	Tot
			, O				al
Course code			SET4405				
Course title	+		Advanced Thermodynamics of Energy				
			Systems				
Scheme			2L: 1T: 0P 3 credits	2	1	0	3
and Credits							
Pre-			Chemical Engineering Thermodynamics II,				
requisites Description	+	$\vdash$	Energy conversion and storage			$\vdash$	
of the			0				
Course			X				
Objectives	1		To impart understanding of fundamentals of				
of the			energy conversion, reversibility and				
course	2	$\vdash$	irreversibility To study energy conversion and storage from				
			molecular perspective				
			4				
Syllabus	1	١	Macroscopic and microscopic analysis of direct	6	3		9
		_ >	and indirect energy conversion in				
		20	thermochemical, electrochemical,				
	2	W	thermomechanical and other processes Kinetic theory and transport phenomena in	6	3		9
	-	~	energy systems				
	3 (	V	Exergy analysis for energy conversion systems	6	3		9
	4.0	`	Case studies: fossil fuels, electrochemical	6	3		9
	2/		cells, fuel cells, photovoltaics, supercritical				
	120	$\vdash$	and combined power generation cycles	24	12	0	36
	Á.	$\vdash$		24	12		30
Suggested	1	$\vdash$	Renaud Gicquel, Energy Systems: A New				
books/	1 ' '		Approach to Engineering Thermodynamics,				
	1						
reference			2012, CRC Press, ISBN 9780415685009 Chandler, David (1987). Introduction to				

		Modern Statistical Mechanics. Oxford				
		University Press. ISBN 0-19-504277-8.				
	2	Ibrahim Dincer and Marc A. Rosen, Exergy,				
		2013, 2nd edition, Elsevier, ISBN: 978-0-08-				
		097089-9				
Outcomes		On completion of the course, the students will				
		be able to				
	CO	Evaluate feasibility of a particular energy				
	1	conversion process or strorage				
	CO	Assess a process for energy efficiency using				
	2	exergy analysis and recommend				
		improvements				
	co	Design efficient energy systems for recovery				
	3	of waste heat, electrochemical storage, etc.				
		(')	L	Т	P	Tot al
Course		SET4506				aı
code		521.1333				
Course title		Materials for Energy Applications				
Scheme		2L: 1T: OP 3 credits	2	1	0	3
and Credits			_	_		
Pre-		Renewable Energy Systems, Combustion and				
requisites		Chemistry of Fuels				
Description						
of the						
Course						
Objectives	1	To understanding the concepts of energy				
of the		materials and their characterizations and				
course	<u></u>	applications in energy devices				
	2	To analyze the material design and relate to				
		photovoltaic device, fuel cell systems and				
		energy storage devices				
	3	To develop ar attitude of innovation/creativity				
		towards material design for various energy				
		harvesting devices				
Syllabus	1	Device fabrication technologies: diffusion,	6	2		8
		oxidation, photolithography, sputtering,				
		physical vapor deposition, chemical vapor				
		deposition (CVD), plasma enhanced CVD				
	_	(PECVD), hot wire CVD (HWCVD)				
	2	High efficiency solar cells, PERL Si solar cell,	12	4		16
		III-V high efficiency solar cells, GaAs solar				
		cells, tandem and multi-junction solar cells,				
		solar PV concentrator cells and systems, III-V,				
		II-VI thin-film solar cells; Amorphous silicon thin-film (and/or flexible) technologies,				
		multijunction (tandem) solar cells,				
		organic/flexible solar cells, polymer				
		composites for solar cells, Spectral response				
		of solar cells, quantum efficiency analysis,				
		dark conductivity, I-V characterization				
	3	Introduction to material characterization:	4	2		6
	•	Scanning electron microscopy (SEM),	-	-		
		Transmission electron microscopy (TEM), X-ray	/			
	-0	diffraction (XRD), Raman spectroscopy, Atomic				
	Ω,	force microscopy (AFM); device fabrication				
	100	and characterization;				
	M.		4	2		6
	14	Materials and devices for energy storage:	-			
	14	Materials and devices for energy storage; Batteries, Carbon Nano-Tubes (CNT),	4			
	14	Batteries, Carbon Nano-Tubes (CNT), fabrication of CNTs, CNTs for hydrogen	4			
	14	Batteries, Carbon Nano-Tubes (CNT),	4			•

		PEM fuel cell, Acid/alkaline fuel cells				
			26	10	0	36
Suggested	1	Duncan W. B., Dermot O., and Richard I. W.				
books/		(2011). Energy Materials, 1st Edition, Wiley				
reference						
	2	Fahrenbruch A. L. and Bube R. H. (1983);				
		Fundamentals of Solar Cells: PV Solar Energy				
		Conversion, Academic Press				
	3	Christoph B. Ullrich S. and Vladimir D. (2014).				
		Organic Photovoltaics: Materials, Device				
		Physics, and Manufacturing Technologies, 2nd				
		Edition, Wiley-VCH				
	4	San P. J. and Pei K. S. (2013). Nanostructured				
		and Advanced Materials for Fuel Cells, 1st				
		Edition, CRC Press				
		. /				
Outcomes		On completion of the course, the students will				
	<u>                                     </u>	be able to				
	СО	Students will be able to understand and				
	1	apply principles in solid state				
		chemistry/physics, material science and				
		engineering, adsorption, surface science, and				
		catalysis in	rmot O., and Richard I. W. aterials, 1st Edition, Wiley and Bube R. H. (1983); Solar Cells: PV Solar Energy emic Press h S. and Vladimir D. (2014). aics: Materials, De vite ufacturing Technologies, 2nd d. S. (2013). Nanostructured terials for Fuel Cells, 1st districtions of the students will able to unterstand and a solid state is, material science and irption, surface science, and distriction will be followed by e of the art review of and research in ment.  L T P To all ment and storage  The energy management, esses, principles of energy low diagram, economics of ion opportunities. The energy management ms, various key features of ion Act and ECBC ige on fundamentals of es and their applications in supply and demand of in the students about the py economics and arousing ractical problem solving  The management programme, of an energy audit, types of rgy audit flow chart;			
		analyzing materials for energy applications.				
	СО	Introductory information will be followed by				
	2	case studies, state of the art review of				
		current materials, and research				
		needs for development.				
		7,	L	Т	Р	Tot
		0				al
Course		SET4507				
code		2,				
<b>Course title</b>		Energy Management				
Scheme		2L: 1T: 0P/ > 3 credits	2	1	0	3
and Credits		V				
Pre-		Chemical Engineering Thermodynamics II,				
requisites		Energy conversion and storage				
Description		Λ'				
of the						
	1					
Course		05				
Objectives	1	To understand the energy management,				
	1	conservation processes, principles of energy				
Objectives	1	conservation processes, principles of energy auditing, energy flow diagram, economics of				
Objectives of the		conservation processes, principles of energy auditing, energy flow diagram, economics of energy conservation opportunities.				
Objectives of the	2	conservation processes, principles of energy auditing, energy flow diagram, economics of energy conservation opportunities.  To understand the energy management				
Objectives of the		conservation processes, principles of energy auditing, energy flow diagram, economics of energy conservation opportunities.  To understand the energy management information systems, various key features of			P	
Objectives of the	2	conservation processes, principles of energy auditing, energy flow diagram, economics of energy conservation opportunities.  To understand the energy management information systems, various key features of Energy Conservation Act and ECBC				
Objectives of the		conservation processes, principles of energy auditing, energy flow diagram, economics of energy conservation opportunities.  To understand the energy management information systems, various key features of Energy Conservation Act and ECBC  To impart knowledge on fundamentals of				
Objectives of the	2	conservation processes, principles of energy auditing, energy flow diagram, economics of energy conservation opportunities.  To understand the energy management information systems, various key features of Energy Conservation Act and ECBC  To impart knowledge on fundamentals of economic principles and their applications in				
Objectives of the	2	conservation processes, principles of energy auditing, energy flow diagram, economics of energy conservation opportunities.  To understand the energy management information systems, various key features of Energy Conservation Act and ECBC  To impart knowledge on fundamentals of economic principles and their applications in the broad field of supply and demand of				
Objectives of the	2	conservation processes, principles of energy auditing, energy flow diagram, economics of energy conservation opportunities.  To understand the energy management information systems, various key features of Energy Conservation Act and ECBC  To impart knowledge on fundamentals of economic principles and their applications in the broad field of supply and demand of energy				
Objectives of the	2	conservation processes, principles of energy auditing, energy flow diagram, economics of energy conservation opportunities.  To understand the energy management information systems, various key features of Energy Conservation Act and ECBC  To impart knowledge on fundamentals of economic principles and their applications in the broad field of supply and demand of				
Objectives of the	3	conservation processes, principles of energy auditing, energy flow diagram, economics of energy conservation opportunities.  To understand the energy management information systems, various key features of Energy Conservation Act and ECBC  To impart knowledge on fundamentals of economic principles and their applications in the broad field of supply and demand of energy				
Objectives of the	3	conservation processes, principles of energy auditing, energy flow diagram, economics of energy conservation opportunities.  To understand the energy management information systems, various key features of Energy Conservation Act and ECBC  To impart knowledge on fundamentals of economic principles and their applications in the broad field of supply and demand of energy  To arouse interest in the students about the				
Objectives of the	3	conservation processes, principles of energy auditing, energy flow diagram, economics of energy conservation opportunities.  To understand the energy management information systems, various key features of Energy Conservation Act and ECBC  To impart knowledge on fundamentals of economic principles and their applications in the broad field of supply and demand of energy  To arouse interest in the students about the problems of energy economics and arousing				
Objectives of the course	3	conservation processes, principles of energy auditing, energy flow diagram, economics of energy conservation opportunities.  To understand the energy management information systems, various key features of Energy Conservation Act and ECBC  To impart knowledge on fundamentals of economic principles and their applications in the broad field of supply and demand of energy  To arouse interest in the students about the problems of energy economics and arousing their interest on practical problem solving				
Objectives of the	3	conservation processes, principles of energy auditing, energy flow diagram, economics of energy conservation opportunities.  To understand the energy management information systems, various key features of Energy Conservation Act and ECBC  To impart knowledge on fundamentals of economic principles and their applications in the broad field of supply and demand of energy  To arouse interest in the students about the problems of energy economics and arousing their interest on practical problem solving skills.  Concept of energy management programme,		1		3
Objectives of the course	3	conservation processes, principles of energy auditing, energy flow diagram, economics of energy conservation opportunities.  To understand the energy management information systems, various key features of Energy Conservation Act and ECBC  To impart knowledge on fundamentals of economic principles and their applications in the broad field of supply and demand of energy  To arouse interest in the students about the problems of energy economics and arousing their interest on practical problem solving skills.		1		3
Objectives of the course	3	conservation processes, principles of energy auditing, energy flow diagram, economics of energy conservation opportunities.  To understand the energy management information systems, various key features of Energy Conservation Act and ECBC  To impart knowledge on fundamentals of economic principles and their applications in the broad field of supply and demand of energy  To arouse interest in the students about the problems of energy economics and arousing their interest on practical problem solving skills.  Concept of energy management programme, basic components of an energy audit, types o		1		3
Objectives of the course	3	conservation processes, principles of energy auditing, energy flow diagram, economics of energy conservation opportunities.  To understand the energy management information systems, various key features of Energy Conservation Act and ECBC  To impart knowledge on fundamentals of economic principles and their applications in the broad field of supply and demand of energy  To arouse interest in the students about the problems of energy economics and arousing their interest on practical problem solving skills.  Concept of energy management programme, basic components of an energy audit, types o energy audit, energy audit flow chart;	f	1		3
Objectives of the course	3	conservation processes, principles of energy auditing, energy flow diagram, economics of energy conservation opportunities.  To understand the energy management information systems, various key features of Energy Conservation Act and ECBC  To impart knowledge on fundamentals of economic principles and their applications in the broad field of supply and demand of energy  To arouse interest in the students about the problems of energy economics and arousing their interest on practical problem solving skills.  Concept of energy management programme, basic components of an energy audit, types of energy audit, energy audit flow chart; Understanding energy use patterns and costs	f	1		3
Objectives of the course	3	conservation processes, principles of energy auditing, energy flow diagram, economics of energy conservation opportunities.  To understand the energy management information systems, various key features of Energy Conservation Act and ECBC  To impart knowledge on fundamentals of economic principles and their applications in the broad field of supply and demand of energy  To arouse interest in the students about the problems of energy economics and arousing their interest on practical problem solving skills.  Concept of energy management programme, basic components of an energy audit, types o energy audit, energy audit flow chart;	f	1		3

and Crodite	1	1					
Scheme and Credits			0 L: 0 T: 4 P 2 Credits				
Course title			Energy Laboratory-1				
Course code	b.		SEP4301	L	Т	P	Tot al
	0,	•					_
	-0	) ·	sources, storage and conversion systems.				
		~	through a combination of disparate energy				
	CO 3	0	Design systems for minimum energy expenditure, minimizing life cycle costs				
	2	V	policy for energy efficiency in process				
	СО	0.	Establish benchline performance and design				
	1	X	etc.				
	СО	4	be able to Perform energy audit of given process, project,				
Outcomes			On completion of the course, the students will				
			Y				
	4		Energy Efficiency, First Edition, CRC Press				
	4		Fairmont Press Kreith F. and West R. E. (1996); Handbook of				
			Management Handbook, Eighth Edition,				
	3		Doty S. and Turner W. C. (2012); Energy				
	2		Ferdinand E. B. (2000); Energy Economics: A Modern Introduction, First Edition, Kluwer				
reference	2		Fordinar d E. R. (2000), Energy Economics: A				
books/			Economics. Springer				
Suggested	1		Bhattacharyya S. C. (2011); Energy				
			( )	24	12	0	36
			energy economics, integrated energy planning	0.6			2.5
			policies; oil import, energy conservation, rural				
	9		Evaluation of National and Regional energy	2	1		3
			power generation from different sources with examples, different models and methods				
			renewable energy, Calculation of unit cost of	_	_		
	8		- different methods  Concepts of economic attributes involving	2	1		3
			optimization; energy planning and forecasting				
	7		Application of econometrics; input and output	2	1		3
			examples, different models and methods				
			renewable energy, Calculation of unit cost of power generation from dirferent sources with				
	6		Concepts of economic attributes involving	2	1		3
			perspectives				
			structure; National energy map of India, Energy subsidy – National and international				
			theory of demand, production and cost market				
	5		Energy accounting framework; Economic	4	2		6
			management, Buildings code, solar passive and green building concepts				
			building heating and cooling load				
	4		Case studies Energy conservation in buildings,	2	1		3
			Energy management information systems, CUSUM techniques				
			Action planning, monitoring and targeting,				
			assessment, baseline and benchmarking,				
	3		Energy management systems, energy conservation policy and performance	4	2		6
	-		managers and auditors	A	2		
			features, Duties and responsibilities of energy				
			companies, Project planning techniques; case studies; Energy conservation act and its				
			techniques and options, Energy service				

requisites			Separation Process				
Objectives	1		To learn to characterization techniques of				
of the	-		conventional energy sources				
course							
course	2		To learn to collect, collate and interpret				
			analytical results				
	3	$\vdash$	To Learn quality and quantitative				
	) b		determination of cample				
		$\vdash$	determination of sample				
			, V	_		_	
Detailed			. O, ⁴	0	0	4	
contents	_	igwdown	OV.			8	
	1		Determination of vaporization characteristics				
			of given petroleum product by ASTM				
			distillation.				
	2		Determination of flash point and fire point.				
	3		Determination of diesel index of given				
			petroleum sample.				
	4		Determination of carbon residue of given				
			petroleum fraction.				
	5		Determination of drop point of given sample.				
	6		Determination of viscosity of given petroleum				
	"		sample.				
	7	$\vdash$	Determination of cloud point and pour point.				
	_	$\vdash$	Determination of cloud point and pour point.  Determination of the smoke point.				
	8	$\vdash$					
	9		Determination of calonific value of fuel by				
	-	$\vdash$	Bomb calorimeter.	_	_		40
			Total	0	0	4	48
		$\vdash$	,			8	
Outcomes		igwdapprox	W.				
			Students will be able to				
	CO		Describe the basic principles of different				
	1		petroleum characterization techniques.				
	СО		Suggest possible characterization techniques				
	2		for given petroleum sample.				
	СО		Strengthen the theoretical knowledge of				
	3		petroleum products.				
	CO		Able to clearly communicate the results of				
	4		experimental work in oral and written formats.				
	CO		Simulate and optimize processes for energy				
	3						
			management				
Course			management				
			SEP4402	L	Т	P	Tot
code			SEP4402	L	Т	Р	Tot al
code Course title			SEP4402 Energy Laboratory-2	L	Т	P	_
code Course title Scheme			SEP4402	L	Т	P	_
code Course title			SEP4402 Energy Laboratory-2	L	Т	P	_
code Course title Scheme			SEP4402 Energy Laboratory-2	L	Т	P	_
Course title Scheme and Credits			SEP4402  Energy Laboratory-2 0 L: 0 T: 4 P 2 Credits	L	Т	P	_
Code Course title Scheme and Credits Pre- requisites	1		Energy Laboratory-2 0 L: 0 T: 4 P 2 Credits  Renewable Energy Technology	L	T	P	_
code Course title Scheme and Credits Pre- requisites Objectives	1		Energy Laboratory-2 0 L: 0 T: 4 P 2 Credits  Renewable Energy Technology To learn to characterization techniques of	L	T	P	_
code Course title Scheme and Credits Pre- requisites Objectives of the	1		Energy Laboratory-2 0 L: 0 T: 4 P 2 Credits  Renewable Energy Technology	L	T	P	_
Code Course title Scheme and Credits Pre- requisites Objectives		>	Energy Laboratory-2 0 L: 0 T: 4 P 2 Credits  Renewable Energy Technology  To learn to characterization techniques of renewable energy sources	L	Т	P	_
code Course title Scheme and Credits Pre- requisites Objectives of the	1 2		Energy Laboratory-2 0 L: 0 T: 4 P 2 Credits  Renewable Energy Technology To learn to characterization techniques of renewable energy sources  To learn to collect, collate and interpret	L	Т	P	_
code Course title Scheme and Credits Pre- requisites Objectives of the	2	(80)	Energy Laboratory-2 0 L: 0 T: 4 P 2 Credits  Renewable Energy Technology  To learn to characterization techniques of renewable energy sources  To learn to collect, collate and interpret analytical results	L	T	P	_
code Course title Scheme and Credits Pre- requisites Objectives of the		2000 July	Energy Laboratory-2 0 L: 0 T: 4 P 2 Credits  Renewable Energy Technology  To learn to characterization techniques of renewable energy sources  To learn to collect, collate and interpret analytical results  To Learn quality and quantitative	L	T	P	_
code Course title Scheme and Credits Pre- requisites Objectives of the	2	, No. 70	Energy Laboratory-2 0 L: 0 T: 4 P 2 Credits  Renewable Energy Technology  To learn to characterization techniques of renewable energy sources  To learn to collect, collate and interpret analytical results	L	T	P	_
code Course title Scheme and Credits Pre- requisites Objectives of the course	2	, 00,00 )	Energy Laboratory-2 0 L: 0 T: 4 P 2 Credits  Renewable Energy Technology  To learn to characterization techniques of renewable energy sources  To learn to collect, collate and interpret analytical results  To Learn quality and quantitative	L	T		_
code Course title Scheme and Credits Pre- requisites Objectives of the course  Detailed	2	, 00,00	Energy Laboratory-2 0 L: 0 T: 4 P 2 Credits  Renewable Energy Technology  To learn to characterization techniques of renewable energy sources  To learn to collect, collate and interpret analytical results  To Learn quality and quantitative	L	0	4	_
code Course title Scheme and Credits Pre- requisites Objectives of the course	2	, 00,00	Energy Laboratory-2 O L: O T: 4 P 2 Credits  Renewable Energy Technology  To learn to characterization techniques of renewable energy sources  To learn to collect, collate and interpret analytical results  To Learn quality and quantitative determination of sample	0	0		_
code Course title Scheme and Credits Pre- requisites Objectives of the course  Detailed	2	, 00,00	Energy Laboratory-2  O L: O T: 4 P 2 Credits  Renewable Energy Technology  To learn to characterization techniques of renewable energy sources  To learn to collect, collate and interpret analytical results  To Learn quality and quantitative determination of sample  Solar cell effectiveness	0	0	4	_
code Course title Scheme and Credits Pre- requisites Objectives of the course  Detailed	3	, 00,00	Energy Laboratory-2 0 L: 0 T: 4 P 2 Credits  Renewable Energy Technology  To learn to characterization techniques of renewable energy sources  To learn to collect, collate and interpret analytical results  To Learn quality and quantitative determination of sample  Solar cell effectiveness Solar Thermal Heater	0	0	4	_
code Course title Scheme and Credits Pre- requisites Objectives of the course  Detailed	2	, 00,00	Energy Laboratory-2 0 L: 0 T: 4 P 2 Credits  Renewable Energy Technology  To learn to characterization techniques of renewable energy sources  To learn to collect, collate and interpret analytical results  To Learn quality and quantitative determination of sample  Solar cell effectiveness Solar Thermal Heater Performance analysis of Solar PV Electricity	0	0	4	_
code Course title Scheme and Credits Pre- requisites Objectives of the course  Detailed	3	, 00,00	Energy Laboratory-2 0 L: 0 T: 4 P 2 Credits  Renewable Energy Technology  To learn to characterization techniques of renewable energy sources  To learn to collect, collate and interpret analytical results  To Learn quality and quantitative determination of sample  Solar cell effectiveness Solar Thermal Heater Performance analysis of Solar PV Electricity Generator	0	0	4	_
code Course title Scheme and Credits Pre- requisites Objectives of the course  Detailed	3	, 00,00	Energy Laboratory-2 0 L: 0 T: 4 P 2 Credits  Renewable Energy Technology  To learn to characterization techniques of renewable energy sources  To learn to collect, collate and interpret analytical results  To Learn quality and quantitative determination of sample  Solar cell effectiveness Solar Thermal Heater Performance analysis of Solar PV Electricity	0	0	4	_

	5 6 7	Biohydrogen from waste (biomass/wastewater) Production of biofuel Characterization of biofuel				
		Total	0	0	4 8	48
Outcomes						
		Students will be able to				
	CO 1	Describe the basic principles of different renewable energy sources characterization techniques.				
	CO 2	Suggest possible characterization techniques for given renewable energy source.				
	CO 3	Strengthen the theoretical knowledge of renewable energy source.				
	CO 4	Able to clearly communicate the results of experimental work in oral and written formats.				

Course code		SET3201					
Course title		Conventional Energy and Utilization					
Scheme and Credit	S	2 L: 1 T: 0 P 3 Credits					
Pre-requisites		Thermodynamics, Heat transfer, Mass and Energy balance					
Objectives of the co	ourse	This part of the course deals with the production of energy from different renergy sources through conventional routes. It is intended to help the young their knowledge upgraded with the current thoughts and newer technology with their advances in the field of the utilization of different types of convergesources for cleaner energy production.	minds to keep options along				
Course title I		etailed contents					
		~V	contact h				
	1	Introduction to the Topic; Classification of various energy sources; Key differences between them; Energy scenario in India; Global usage statistics	2				
	2	Natural gas – Formation, Unconventional sources, composition and combustion properties, Natural gas production, transport and storage, applications.	4				
	3	LNG production, transport and storage	2				
	4	Coal – Origin, structure and classification; Coal mining	4				
Renewable and	5	Usage of coal in electricity generation, iron and cement industry	4				
Non-Renewable Energy	4	Petroleum – Consumption of oil, sources and production of oil, crude oil characterization	4				
	5	Refining of crude oil	4				
	6	Nuclear Energy – Fission and Fusion cycle, Resources, fuel cycles, Electricity generation,	4				
	7	Nuclear reactors – Types, Generations; Nuclear waste management	4				
	8	Cleaner routes of energy production from conventional sources	2				
	9	Hubbert Peak theory, Peak production forecast for conventional energy sources	2				
	Tota	L C	36				
Suggested		1. Tushar K. Ghosh, Mark A. Prelas (eds.) - Energy Resources and Systems					
text/reference		Volume 1 Fundamentals and Non-Renewable Resources (2009, Springer					
books		Netherlands)					
		2. Kyle Forinash - Physics and the Environment – IOP Science, 2017					
		3. Vikram Janardhan, Bob Fesmire - Energy Explained, Volume 1_ Conventional Energy (2010, Rowman & Littlefield Publishers)					

Course code		SET3302				
Course title		Special Subject 2: Renewable Energy and Utilization				
Scheme and Credits		2 L: 1 1. 0 P 3 Credits				
Pre-requisites		Thermodynamics, Heat transfer, Conventional energy				
Objectives of the o	course	This part of the course deals with the production of energy from different renewable energy				
		sources through different routes. It is intended to help the young minds to keep their				
		knowledge upgraded with the current thoughts and newer technology options along with				
		their advances in the field of the utilization of different types of unconven	tional energy			
		resources for cleaner energy production.				
Course title	Detaile	d contents	Total			
	Õ		contact h			
Renewable and	1 ₹	Classification of various renewable energy sources; Principles of renewable	1			
Non-Renewable	~	energy, Renewable Energy scenario in India; Global usage statistics	1			
Energy	2	Solar Energy:				
	0.	<ul> <li>Energy Transfer to the Earth</li> </ul>				
	Do	Use of Solar Energy	6			
	1	<ul> <li>Concentrating Solar Power (CSP)</li> </ul>				
		<ul> <li>Photovoltaics</li> </ul>				
	3	Wind Energy	6			
		Harvesting Energy from Wind				
		Energy and Power from Wind				

		T. 1	<u> </u>
		• Turbine Types	
		Industrial Wind Turbines     National Wind Turbines	
	4	Low Frequency Noise form Wind Turbines	
	4	Hydro-power	
		Hydropower systems     Hydropower systems	6
		Hydro-turbines     Hydro-turbines	
		Hydropower System Efficiency	
	5	Ocean Energy	
		Ocean Energy Potential against Wind and Solar	
		Wave Characteristics and Statistics	
		Wave Energy Devices	6
		Tide characteristics and Statistics	
		Tide Energy Technologies	
		Ocean Thermal Energy	
		Osmotic Power	
	4	Geothermal Energy	
		Geothermal Resources	4
		Geothermal Technologies	
	5	Bioenergy	
		Energy Source of Biomass	
		Composition of Biomass	4
		Biomass Resources, Land Requirement, and Production	7
		Biomethane and biofuel	
		Biofeedstock for Industrial Chemicals	
	6	Ethanol	
		Ethanol Production from Corn	1
		Sugar Crop Fermentation	1
		<ul> <li>Production of Ethanol from Cellulosic Biomass</li> </ul>	
	7	Hydrogen energy	
		Hydrogen Internal Combustion Engine	_
		Hydrogen Production Methods	2
		Hydrogen Storage	
		TOTAL	36
Suggested	4.	Tushar K. Ghosh, Mark A. Prelas (eds.) - Energy Resources and Systems	
text/reference		Volume 2 Renewable Resources (2009, Springer Netherlands)	
books			
	5.	John Twidell, Tony Weir - Renewable Energy Resources-Taylor & Francis	
		(2005)	
		(2003)	
	6.	Aldo V. da Kosa - Fundamentals of Renewable Energy Processes-Elsevier	
	0.	Academic Press (2005)	
		Academic (1055 (2005)	
Outcomes	Studen	ats will be able to	
	•	Understand the various renewable resources for energy utilization	
	•	Analyse the mechanism for producing energy from renewable resources	
	•	Develop the correlations and methodologies to calculate the power ratings	
		of renewable energy devices	
		the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	
		λ	
		V	

Course code	SET3403	
Course title	Energy and Sustainability	
Scheme and Credits	2 L: 1 T: 0 P 3 Credits	
Pre-requisites \(\frac{1}{2}\)	Thermodynamics, Heat transfer, Mass and Energy balance	
Objectives of the cour	This course deals with Sustainable developments in energy sector and the relevant ongoing	ıg
	advancements in this domain. The course also includes different strategies for meetir	1g
	sustainable Goals.	
Course title	Detailed contents Total	

			contact h
Energy and Sustainability	1 1	Introduction to the Topic; Sustainable Energy Systems, Sustainability Challenges and Opportunities	3
v	2	Energy Demand; Industrial and Commercial Sectors, Residential Sector, Transportation Sector	3
	3	Conventional and Unconventional Fossil Fuel Sources; Green House Gas Emissions	3
	4	Climate Mitigation Policies	3
	5	Energy Poverty and Cooking; Clean Cooking	3
	6	Renewable Energy Technologies; Solar, Wind, Hydro, Geothermal, Tide/Wave; Nuclear Power	4
		Sustainable Biofuel; First Generation, Second Generation, Third Generation, Fourth Generation; Bioenergy with Carbon Capture and Storage	4
	8	Carbon Sequestration Technologies	4
	9	Energy Analysis and Carbon Accounting; Life Cycle Analysis	3
	10	Energy Efficiency Technologies; Green Building, Industrial Energy Efficiency, Sustainable Energy Design	3
	11	Energy Security and Sustainable Development	3
	Total	. )	36

Course code		SET3404				
Course title		Coal Engineering and Coal to Chemicals				
Scheme and Credit	s	2 L: 1 T: 0 P 3 Credits				
Pre-requisites		Thermodynamics, Heat transfer, Mass and Energy balance				
Objectives of the course		extraction to power generation and production of other chemicals. The course the pollution from coal combustion, control strategies and clean coal technology	This course deals with all the processes and technologies associated with coal right from extraction to power generation and production of other chemicals. The course also includes			
Course title	Deta	iled contents	Total contact h			
	1	Introduction to the Topic; Role of coal in Energy Growth and CO ₂ Emissions; Worldwide distribution of coal, Global coal consumption, Coal usage in power generation, Iron and Cement industry	3			
	2	Origin of coal; Coal fication; Classification; Chemical and Physical Characteristics of Coal	3			
	3	Coal Mining; Underground Mining, Surface Mining, Impact of mining on environment	2			
	4	Introduction to coal utilization technologies; Coal combustion, Carbonization, Gasification, Liquefaction	4			
	5	Coal Gasification; Types of gasifiers, Commercial gasifiers; Coal to liquid fuels, Direct and Indirect coal liquefaction	4			
<b>Coal Engineering</b>	6	Coal Fired Power Plant; Coal Transport, Handling, Storage, Size reduction; Steam Turbines & Electricity Generation; Ash and by-product handling	4			
	7	Coal based electricity generation; pulverized coal combustion (PC), PC combustion using subcritical, supercritical, or ultra-supercritical steam cycles, circulating fluidized bed combustion	4			
	8	Coal Gasification; Basics of gasification, Products of gasification	3			
	9	Direct Coal Liquefaction; Single-Stage direct liquefaction, Two-Stage direct liquefaction	3			
	10	Coal to Olefins; Coal to Methanol, Methanol to Olefin, Coal to Gasoline and LPG and jet fuels	4			
	(II)	Clean Coal Technology in India	2			
	Tota		36			

Course code	SET3405

Course title		Electrochemical Technology				
Scheme and Credits		2 L: 1 T: 0 P 3 Credits				
Pre-requisites		Thermodynamics, Momentum transfer, Electrochemistry				
Objectives of the cou	irse	This part of the course deals with the production of energy from electrochem is intended to help the young minds to understand the basic chemistry of e cells. At the same time this topic is going to give an insight on different e technology application in industries.	lectrochemical			
Course title		Detailed contents	Total contact h			
	1	Introduction to the Topic; Overview of application of electrochemical technology, Atomic structures	2			
	2	Properties of solutions, electrolytic dissociation, activity and activity coefficient, acid and bases, pH, ionic product of water, Hydrolysis of salts,	4			
	3	Electrochemical double layer – supercapacitors, Determination of power and power density, energy density	4			
	4	Fine structure of double layer - Helmholtz' approach, Gouy and Chapman model, model by Otto Stern, Bockris-Miller-Devanathan Model	6			
Electrochemical Technology	5	Electrochemical analytical techniques - Kirchhoff's Law, redox processes, metal and semiconductor conductivity, Electrogravimetry, conductivity,	6			
	6	Electrochemical analytical techn ques- Potentiometry	4			
	7	Electrochemical analytical techniques- voltammetry and polarography, ion selective electrodes,	4			
	8	Karl fischer titration, Electrochemical Sensors	2			
	9	Electrochemical cells - Faraday's law, Clark cell, Weston cell, Electrolyzer cells, Water electrolysis	4			
	Tota		36			
Suggested		1. Electrochemical Energy Systems: Foundations, Energy Storage and				
text/reference		Conversion by Artur Braun				
books		2. Electrochemical technologies for energy storage and conversion by Ru-Shi Liu, et al				

Course code	SET3506	
Course title	Energy Storage Devices	
Scheme and	2 L: 1 T: 0 P 3 Credits	
Credits	V.	
Pre-requisites	Thermodynamics, Electrochemical technology	
Objectives of the	This part of the course deals with the storage of energy primarily from electrochemic	cal sources. It
course	is intended to make the students aware of different types of energy storage dev	rices available
	presently. At the same time the future prospects of the energy cells will be focused.	
Course title	Detailed contents	Total
Course title	Detailed contents	contact h
Energy Storage	1 Definition of Primary and secondary battery	2
Devices	2 Thermodynamics of electrochemical energy storage – reaction free energy	
	and equilibrium cell voltage, terminal velocity, current-voltage diagram,	8
	Overcharge Reactions, Coulometric Efficiency and Energy Efficiency, Cycle	O
	Life and Shelf Life	
1	Aqueous Electrolyte Batteries- Materials and electrochemistry - Manganese	
1	Oxides, Nickel Hydroxides, Lead Oxides, Bromine-Storage Materials,	6
	Metal Hydride Electrodes	
	4 Alkali Metal Batteries- Lithium Intercalation Cathode Materials for Lithium-	8
	Ion Batteries, Rechargeable Lithium Anodes, Lithium Alloy Anodes, The	
	Anode/Electrolyte Interface, Liquid Nonaqueous Electrolytes. Materials for	

	High-Temperature Batteries			
	5 Fuel cells- Comparison of efficiency of the combustion engine and fuel cell, development of battery vehicles, Hydrogen fuel cell	4		
	6 Variety of fuel cells, The proton exchange membrane fuel cell, Solid oxide fuel cell (SOFC), Electronic structure and conductivity of SOFC cathode materials			
	7 Photoelectrochemical cells	4		
	Total	36		
Suggested	Electrochemical Energy Systems: Foundations, Energy Storage and			
text/reference	Conversion by Artur Braun			
books	^'			
	Electrochemical technologies for energy storage and conversion by Ru- Shi Liu, et al			

Course code	SET3507					
Course title	Advances in Solar and wind energy					
Scheme and	2 L: 1 T: 0 P 3 Credits					
Credits	Α					
Pre-requisites	Thermodynamics, Renewable energy, Heat transfer					
Objectives of the	This part of the course deals with two most important renewable energy sources-	solar and wind				
course	energy. This course focuses mainly on the progressive development of solar as					
	energy. The future prospects of these two as sustainable energy forms will also be di	scussed.				
Course title	Detailed contents	Total contact h				
	Solar radiation – Geometry of collector and the solar beam, measurement of solar radiation	2				
	2 Solar water heating- heat balance, different types of solar water heater, Social and environmental aspects, Concentrating Solar Power	4				
E., 64	3 Photovoltaic generation- band theory, silicon p-n junction, current voltage characteristics, fabrication of silicon, thin film deposition	6				
Energy Storage Devices	4 Dye sensitized solar cells, quantum dot solar cells, organic solar cells, Perovskite solar cells,	6				
	5 Wind energy: Turbine types, terms and theories	6				
	6 Characteristics and power generation from wind energy	6				
	7 Wind farm, small wind systems, Low frequency noise from wind turbines	6				
	Total	36				
Suggested	1. Tushar K. Ghosh, Mark A. Prelas (eds.) - Energy Resources and					
text/reference	Systems, Volume 2					
books	2. John Twidell, Tony Weir - Renewable Energy Resources-Taylor & Francis					

Course code	() ST					
Course title	Special Lab – I- Energy Engineering	pecial Lab – I- Energy Engineering				
Scheme and Credits	0 L: 0 T: 4 P 2 Credits					
Pre-requisites \(\forall \)	Special subject – Energy Engineering – Renewable and non-renewable energy ba	pecial subject – Energy Engineering – Renewable and non-renewable energy basics				
Objectives of the						
course						
Course title	<b>Detailed contents</b>	Total				
		contact h				

	1	Determination of flash point and fire point of petroleum cuts	4				
	2	Determination of viscosity of petroleum cuts	4				
	3	Determination of calorific value of a solid and liquid fuel	4				
	4						
Special Lab -I		ASTM distillation of diesel fuel					
	5	Copper strip corrosion of liquid fuel	4				
	6	Working principle of Solar, wind and hydraulic power generation – analysis of	4				
		circuits	4				
		Total	24				
Suggested		0,					
text/reference		0,					
books		V					
Outcomes		.0					
		n ⁻					
		\ '					

Course code		ST				
Course title		Special Lab – 2- Energy Engineering				
Scheme and Cred	redits 0 L: 0 T: 4 P 2 Credits					
Pre-requisites		Special subject – Energy Engineering – Renewable and non renewable energy	rgy basics			
Objectives of the		· · · · · · · · · · · · · · · · · · ·				
course		\				
Course title		<b>Detailed contents</b>	Total			
		55	contact h			
	1	Performance analysis of Solar PV Electricity Generator	4			
	2	Study of Solar Thermal Heater using the solar concentrator	4			
	3	Performance analysis of Wind turbine electricity generator	4			
Special Lab -II	4	Estimation of calorific value of biomass versus petroleum	4			
	5	Estimation of energy requirement for biomass fractionation	4			
	6	To study the power storage of electrochemical cells	4			
		Total	24			
Suggested text/reference books						
Outcomes						

Petroleum and Petrochemi cals

SP #	Course Code (IOCB)		Туре	List of Subjects
1	SPT330 2	SPT430 2	Theory	Introduction to petroleum technology
2	SPT340 3	SPT440 3	Theory	Petroleum refining processes
3	SPT340 4	SPT440 4	Theory	Refinery engineering
4	SPT350 6	SPT450 6	Theory	Reservoir Technology
5	SPT340 5	SPT440 5	Theory	Petrochemicals technology
6	SPT350 7	SPT450 7	Theory	Industrial Catalysis
7	SPT350 8	SPT450 8	Theory	Petroleum economics and management
1	SPP340 2	SPP440 2	Laborator y	Petroleum Chracterization Laboratory-I
2	SPP340 3	SPP440 3	Laborator Y	Petroleum Laboratory-II

			8	L	Т	Р	Tot
			~				al
Course code			SPT4302 \\				
Course title			Introduction to Petroleum				
			Technology.				
Scheme and Credits			2L: 1T: 0P 3 Credits				
Pre- requisites			Chemistry I & II, Physics I & II, Material and energy balance calculations, Mass transfer operations.				
Objectives of the course			, of				
		7	To give students an overview of: Petroleum industry, its history, important petroleum product, there characterization and general refinery setup.				
Detailed contents		A					
	1	200	Introduction to petroleum and petrochemical industry, history of petroleum, Current Indian and global scenario, oil pricing, future trends and developments.	2	1		3
	20		Origin of petroleum, organic and inorganic theories of origin of petroleum, Kerogen composition, composition of crude oil, hydrocarbons and non-hydrocarbons present (type, functional groups, name, structure, role etc.), classification of crude oil.	4	2		6
	3		Introduction to refinery, Types of refineries: simple, intermediate and complex refineries, history and current status of Indian refineries, general	2	1		3

			refinery setup				
	4		Major petroleum products (LPG,	2	1		3
			gasoline, kerosene, diesel, aviation				
			turbine fuel, lube oil etc.,), their				
			specification (Indian context), additives				
			used to meet requirements and testing				
	5		methods for petroleum products.	4	2		6
	3		Major petrochemical products, Feed stock for petrochemicals.	4	2		O
	6		Exploration: Geological, geophysical	4	2		6
			and geochemical methods of				
			exploration, basin and exploration				
			strategies, application of remote				
			sensing in petroleum resource				
			development, instruments used – principles and working; magnetometers,				
			seismogram, radiation counters and				
			gravimeters.				
	7		Drilling: Drilling methods (vertical,	2	1		3
			deviated and horizontal), cable tool,				
			rotary and turbo drilling, drilling				
			equipment: Drilling rigs and drilling				
			string, drilling fluid- composition and				
	8		functions.  Oil recovery: Well logging and well	4	2		6
	8		completion, well testing and control,	-			U
			free flow and gas lifting, mechanical				
			pumping, primary oil recovery,				
			secondary oil recovery and enhanced oil				
			recovery methods, gravity drainage,				
			water flooding.				
			Total	24	1		36
Suggested		-	\$		2		
books.			.0				
<del></del>		1	Petroleum refining, Technology and				
			Economics by J H Gary and G E				
			Handwork.				
		2	The Chemistry and Technology of				
		3	Petroleum by James G Speight, Composition and properties of				
		٥	Composition and properties of   Petroleum by H J Neumann, B P Lahme				
			and B Severin				
		4	Modern Petroleum Technology : G D				
			Hobson and W Pohl				
		5 🍖	Modern petroleum refining processes by				
Octobron		. \	B K Bhaskara Rao				
Outcomes	CO1	4	Student will know the history and origin				
	201	0,	of petroleum.				
	CO2	λ	Student will understand the importance				
	30-	O.	of petroleum technology.				
	CO3	U	Student will know the specifications of				
	4		various petroleum products.				
	CO4		Student will be able the list out different				
	~		processes involved in petroleum				
	X	<u> </u>	refinery.		-		T- 1
	Q.			L	Т	P	Tot
Course code	K		SPT4303				al
Course title	*		Petroleum refining processes				
Scheme and			2L: 1T: 0P 3 Credits				
Credits							
Pre-			Chemistry I & II, Material & Energy				
110							

requisites			Balance Calculations, Physical				
			Chemistry, Introduction to petroleum				
			technology.				
Objectives of			Students will learn the thermodynamics				
•			Students will learn the thermodynamics,				
the course			kinetics, mechanism and process flow				
			diagram of various refining processes				
			used to improve the quality of different				
			petroleum fraction.				
			periorealli il decioni				
Datallad			· 1/2				
Detailed			C.A.				
contents			2				
	1		Separation of oil and gas, pre-treatment	2	1		3
			methods, removal of moisture and salts,				
			transportation and storage.				
	2		Thermal cracking, thermal processing	4	2		6
				-	~		0
			like visbreaking, delayed coking, fluid				
			coking, flexicoking.				
	3		Catalytic cracking: Cracking reactions,	4	2		6
			cracking catalysts, cracking units,				
			fluidized bed catalytic cracking (FCC),				
			new designs for FCC units.				
	4			4	-		
	4		Hydrocracking and hydro-processing:	4	2		6
			Hydrocracking reactions, hydrocracking				
			catalysts, hydrocracker unit, hydro-				
			processor, hydrogen production and				
			purification.				
	5		Catalytic reforming: Reforming	4	2		6
				-			U
			reactions, feed preparations, reforming				
			catalyst, reactor design, catalytic				
			reformer.				
	6		Light end processes: Isomerization,	6	3		9
			alkylation and polymerisation.				
			Total	24	1	0	36
			40	2-4	2		30
Cummantal	1		( )				
Suggested			V				
books.			,				
		1	Petroleum Refining Engineering by W L				
			Nelson.				
		2	Petroleum Processing, Principles and				
	-	-	Applications by R J Hengstebeck.				
		3	Modern Petroleum Technology by G.D.				
			Hooson				
Outcomes			Students will learn				
	CO1		to identify the process/technique to				
		- the	improve quality of given petroleum				
		7					
		. 1	fraction.				
	CO2	4	Draw process flow diagrams/process				
		3	block diagrams for any given refinery				
		, V	operation.				
	İ	λ		L	Т	Р	Tot
		V		-			
		U	CDT4404				al
Course code	1	Γ	SPT4404				
Course title	~~		Reservoir Technology				
Scheme and	10		2L: 1T: 0P 3 Credits				
Credits	~						
Pre-	- 50		Introduction to petroleum technology,				
	~					4	
	~						
requisites	QX		momentum transfer, mass transfer				
1	QX		momentum transfer, mass transfer operations, Materials physics.				
requisites Objectives of	QX		momentum transfer, mass transfer operations, Materials physics.  To impart knowledge in the basic				
Objectives of	2,4		momentum transfer, mass transfer operations, Materials physics.  To impart knowledge in the basic				
1	2		momentum transfer, mass transfer operations, Materials physics. To impart knowledge in the basic concepts like PVT analysis for oil,				
Objectives of	QX		momentum transfer, mass transfer operations, Materials physics. To impart knowledge in the basic concepts like PVT analysis for oil, Material balance				
Objectives of	Q ^X		momentum transfer, mass transfer operations, Materials physics. To impart knowledge in the basic concepts like PVT analysis for oil,				

			stabilized flow conditions.				
Detailed							
contents							
	1		Petroleum geology, types of rocks,	4	2		6
			sedimentary rocks, Oil and gas traps, migration and accumulation of oil and				
			gas,				
	2		Petroleum reservoir, properties of	4	2		6
			petroleum and gas in rocks,				
			fundamentals of oil and gas flow in porous media. Natural gas and gas				
			hydrates.				
	3		Reservoir Fluids: Phase behaviour of	6	3		9
			hydrocarbon system, ideal & ron ideal				
			system, equilibrium ratios, reservoir fluid sampling, PVT properties				
			determination, different correlations and				
			laboratory measurements, data				
	A		reduction, evaluation and application.	4	2		-
	4		Reserve estimation: resource & reserve concept, Different reserve estimation	4	2		6
			techniques				
	5		Volumetric, MBE, decline curve analysis,	6	3		9
			latest SPE/ WPC/ IS classification, predicting reservoir performance,				
			introduction to reservoir simulation.				
			Total	24	1		36
					2		
Suggested books.			13.				
DOOKS.		1	Advanced Reservoir Engineering by T.				
		-	Ahmed and P. McKinney.				
		2	Principles of Petroleum Reservoir				
		2	Engineering by G.L. Chierici.				
		3	Applied Petroleum Reservoir Engineering by R.E, Terry, M. Hawkins				
			and B.C. Craft.				
		4	Fundamentals of Reservoir Engineering				
0-1			by L.P. Dake.				
Outcomes	CO1		Students will  Do calculations on basic PVT analysis of				
	CO1		the specific reservoir of various sands				
	CO2		Estimate the reserves of various sands				
		_	of the reservoir from well data.				
	CO3	6	Understand the key concepts of petroleum geology.				
		- 1	penoieum geology.				
		3		L	Т	Р	Tot
Course seeds		Y	SDT4402				al
Course code Course title		Q	SPT4403 Refinery engineering				
Scheme and	(	0	2L: 1T: 0P 3 Credits				
Credits	2						
Pre-	10		Mass transfer operations, Separation				
requisites	0		processes, Heat transfer, Chemical reaction engineering, Petroleum refining				
	01		processes				
Objectives of	2		In this student will learn to apply their				
the course	1		knowledge of mass transfer, heat				
			transfer, equipment design and chemical reaction engineering to				
			complex processes of petroleum				
	L		refineries.				
	•	•			•	•	

Detailed						
contents	1		Decision aspects of pine still beaters	2	2	-
	*		Design aspects of pipe still heaters, radiant and convection sections,	3	2	5
			calculation of heat flux, radius and			
			number of pipes. Furnace design: Heat			
			load calculations for furnace heaters,			
			typical heat flux values, basic			
			constructional features, different			
			furnace types, factors to be considered in the design of fired heaters.			
	2		Distillation curves: ASTM, TBP, EFV	6	3	9
			distillation curves; experimental details,			
			their comparison and inter relations by			
			Nelson and Edmister correlations.			
			Multicomponent vapour liquid			
			equilibrium, flash distillation, key components, dew point and bubble			
			point calculations. Multicomponent			
			distillation, calculation of number of			
			stages in distillation, calculation of			
			minimum reflux and number of plates,			
	-		feed plate location.	6	-	_
	3		Atmospheric distillation tower: Types of refluxes, concept of overflash, overall	6	3	9
			material balance, estimation of top,			
			bottom, side draw tray temperatures,			
			energy balance for atmospheric			
			distillation tower. Vacuum distillation			
			tower: Type of operations, vacuum			
			distillation column internals, flash zone			
			and tower base calculations, flash zone pressure, steam requirements, heat and			
			material balance calculations.			
	4		Multicomponent liquid - liquid	3	1	4
			equilibrium relations, estimation of			
			number of stages by triangular and			
			rectangular diagrams for complex petroleum oils.			
	5		Multicomponent absorption and	3	2	5
			stripping in refinery operations,		_	
			absorption and stripping factors and			
			their significance. Mathematical			
			analysis of multi- component absorbers			
		*	and strippers, Kremser-Brown absorption factor methods.			
	6	. \	Adsorption, breakthrough phenomena,	3	1	4
		4	concept of adsorption zone height,		_	7
		10,	unsteady state fixed bed operation, LUB			
		λ	concept, design of absorbers. Sorbex			
		U	technologies and its concepts.	2.1	_	2.0
	16	U	Total	24	1 2	36
Suggested	~					
books.	10					
	D,	1	Petroleum Refining Engineering by W L			
	ΩX		Nelson.			
	120	2	Petroleum Refinery Distillation by			
	Ķ.	3	R.N.Watkins, Refinery process modelling by G. L.			
		3	Kaes.			
		4	Chemical Reactor Design and Process			
		'	Plants, Vol I and II, H.F.Rase.			
		5	Heterogeneous Reactions, Analysis,			

			Examples and Reactor Design, L. K.				
			Doraiswamy and M. M. Sharma.				
Outcomes			Students will				
	CO1		Analyse multicomponent VLE data.				
	CO2		Perform multicomponent distillation calculation.				
	CO3		Carry out multicomponent liquid-liquid extraction.				
	CO4		Identify best reactor configuration for given process and design it.				
			-0'	L	Т	Р	Tot al
Course code			SPT4405				u.
Course title			Petrochemicals Technology				
Scheme and Credits			2L: 1T: 0P 3 Credits				
Pre-			Chemistry I & II, Material & Energy				
requisites			Balance Calculations, Physical Chemistry, Introduction to petroleum technology.				
Objectives of the course			This course focusses on manufacturing processes of all important				
			petrochemical products.				
Dotollad	1		Α*				
Detailed contents			G				
	1		Chemicals derived from C1-C2.	4	2		6
			Chemicals from natural gas, naphtha				
			etc. Principal reactions of Methane,				
			ethane, ethylene and acetylene.				
			Naphtha and gas cracking to produce				
	2		C2-C4 olefins, dienes and aromatics. Chemicals from C3 and C4. Production	4	2		6
			of isopropanol, acrylonitrile, acrylic acid,	4			0
			propylene oxide, propylene glycol,				
			polymers and copolymers of propylene,				
			dehydrogenation of butane, production				
			of MTBE, acetic acid from butene,				
			butadiene from butane, maleic				
			anhydride.				
	3		Chemicals from high molecular weight	4	2		6
			n-paraffin: Oxidation of n-paraffin to				
			fatty acids and fatty alcohols, chlorination and sulfonation of n-				
			paraffin.				
	4	- 6	Petroleum aromatics. Chemicals based	4	2		6
		١,١	on benzene, toluene and xylene (BTX),				
		7	synthesis of ethylbenzene, phenol,				
		0,	aniline, nitrobenzene, chlorobenzene,				
		1	styrene, cumine, benzoic acid, o-				
		0	cresols, benzaldehyde, phthalic				
	5 (	<i>b</i>	anhydride. Polymerization fundamentals, Ziegler	2	1		3
	7		Natta catalysts, polymerization of				3
	٠,0		simple olefins such as ethylene and				
	2		propylene. Synthetic rubbers,				
	Q		manufacture, general characteristics,				
	0,		raw materials for synthesis, range of				
	De		synthetic rubbers, PBR, SBR, NBR, butyl				
	1		rubber.				
	6		Waxes - Introduction, History of waxes	2	1		3
			and their applications, definitions, classification- natural, partially synthetic				
			and fully synthetic wax. Petroleum wax:				
			and fully symmetic wax. remoleum wax:				

Macro-crystalline wax (paraffin wax), microcrystalline wax, division into product classes of paraffin wax. Lubricating oils, specifications, characteristics, production of lube specialities, additives, refining of lubricating oil: solvent chemicals & hydrogenation method, dewaxing, deasphalting etc. Manufacturing of grease, manufacture of specialitypils viz: insulating oil, transformer oil, white oil, etc.    Total								
product classes of paraffin wax. Lubricating oils, specifications, characteristics, production of lube specialities, additives, refining of lubricating oil: solvent chemicals & hydrogenation method, dewaxing, deasphalting etc. Manufacturing or grease, manufacture of specialtyroils viz. insulating oil, transformer oil, white oil, etc.  Total  Suggested books.  1 Fundamentals of Petroleum Chemicals Technology by PBelov Erchnology by PBelov Erchnology by PBelov Erchnology by PBelov Erchnology Kirk-Othmer.  3 Ulmann's Encyclopedia of Chemical Nechnology, Kirk-Othmer. 4 Dryden's Outlines of Chemical Technology Erchnology By Belov Erchnology By Belov Erchnology By Belov Erchnology By Belov Erchnology By Belov Erchnology By Belov Erchnology By Belov By By By By By By By By By By By By By				Macro-crystalline wax (paraffin wax),				
Total								
characteristics, production of lube specialities, additives, refining of lubricating oil: solvent chemicals & hydrogenation method, dewaxing, deasphalting etc. Manufacturing oil grease, manufacture of specialtyroils viz. insulating oil, transformer oil, white oil, etc.  Total 22 1 33  Suggested books.  1 Fundamentals of Petroleum Chemicals Technology by P.Belov Erchnology by P.Belov Erchnology by P.Belov Erchnology oil, reference of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the								
specialities, additives, refining of lubricating oil: solvent chemicals & hydrogenation method, dewaxing, deasphalting etc. Manufacturing of grease, manufacture of speciality oils viz. Insulating oil, transformer oil, white oil, etc.  Total  22 1 333  Suggested books.  1 Fundamentals of Petroleum Chemicals Technology by P.Belov 2 Encyclopedia of Chemical Nechnology, Kirk-Othmer. 3 Ulmann's Encyclopedia of Industrial Chemistry 4 Dryden's Outlines of Chemical Nechnology, Kirk-Othmer. 4 Dryden's Outlines of Chemical Technology 5 A Text Book on Petroleum Chemicals Results of Students will Draw process flow diagrams/process block diagrams for the manufacture of various petrochemicals from process of Students will Draw process flow diagrams/process block diagrams for the manufacture of various petrochemicals from process description.  CO2 List out various alternatives for carrying out a particular process and provide recommendations for the best choice.  CO3 SPT4506 Course code SPT4506 Course title Industrial Catalysis Scheme and Credits Credits Pre- requisites chemical Strome of Chemical reaction elancering, Petroleum refining placesses, Petrochemical technology. Objectives of the course is to give students an overview of different types catalyst, their characterization, synthesis and application in petroleum refining and petrochemical synthesis  1 Catalyst - activation energy concept, types of catalysis, comparison of homogeneous catalysis, comparison of homogeneous catalysis, pana catalysis, green catalysis, green catalysis, nano catalysis, green catalysis, green catalysis, nano catalysis, green catalysis, pana catalysis, sheps in heterogeneous catalyses, serier effects, electronic factors.  2 Fundamentals of heterogeneous catalyses, serier effects, electronic factors. Catalyst charecterization, SEM, TEM, XRD.		7			2	1		3
Lubricating oil: solvent chemicals & hydrogenation method, dewaxing, deasphalting etc. Manufacturing of grease, manufacture of specialty oils viz. insulating oil, transformer oil, white oil, etc.   Total								
hydrogenation method, dewaxing, deasphalting etc. Manufacturing of grease, manufacture of specialty olis viz. insulating oil, transformer oil. White oil, etc.  Total  Total  22 1 1 33  Suggested books.  1 Fundamentals of Petroleum Chemicals Technology by P.Belov  2 Encyclopedia of Chemical Technology, Kirk-Othmer.  3 Ulmann's Encyclopedia of Industrial Chemistry  4 Dryden's Outlines of Ahemical Technology  5 A Text Book on Petroleumicals, B. KBhaskara Rad.  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cottomes  Cott				specialities, additives, refining of				
deasphalting etc. Manufacturing of grease, manufacture of specialty oils viz. Insulating oil, transformer oil, white oil, etc.  Total 22 1 333  Suggested books.  1 Fundamentals of Petroleum Chemicals Technology by P.Belov 2 Encyclopedia of Chemical Vechnology, Kirk-Othmer. 3 Ulmann's Encyclopedia of Industrial Chemistry. 4 Dryden's Outlines of Chemical Vechnology, Kirk-Othmer. 5 A Text Book on Petrochemicals, B.K.Bhaskara Rad.  Outcomes CO1 Draw process flow diagrams/process block diagrams for the manufacture of various petrochemicals from process description. CO2 List out various alternatives for carrying out a particular process and provide recommendations for the best choice.  CO3 SPT4506  CO4 SPT4506  CO5 List out various alternatives for carrying out a particular process and provide recommendations for the best choice.  CO5 List out various alternatives for carrying out a particular process and provide recommendations for the best choice.  CO6 List out various alternatives for carrying out a particular process and provide recommendations for the best choice.  CO7 Course code CO8 SPT4506  CO8 List out various alternatives for carrying out a particular process and provide recommendations for the best choice.  CO8 List out various alternatives for carrying out a particular process and provide recommendations for the best choice.  CO9 List out various alternatives for carrying out a particular process and provide recommendations for the best choice.  CO9 List out various alternatives for carrying out a particular process and provide recommendations for the best choice.  CO9 List out various alternatives for carrying out a particular process and provide recommendations for the best choice.  CO9 List out various alternatives for carrying out a particular process and provide recommendations for the best choice.  CO9 List out various alternatives for carrying out a particular process flow displayed by the process flow displayed by the process flow displayed by the process flow displayed by the process flow display				lubricating oil: solvent chemicals &				
grease, manufacture of specialty oils viz. insulating oil, transformer oil, white oil, etc.  Total  Total  22 1 1 33  Suggested books.  1 Fundamentals of Petroleum Chemicals Technology by P.Belov  2 Encyclopedia of Chemical Vechnology, Kirk-Othmer.  3 Ulimam's Encyclopedia of Industrial Chemistry  4 Dryden's Outlines of Chemical Technology  5 A Text Book on Petrochemicals, B.K. Shaskara Rad.  Outcomes  CO1 Draw process flow diagrams/process block diagrams for the manufacture of various petrochemicals from process description.  CO2 List out various alternatives for carrying out a particular process and provide recommencibations for the best choice.  CO3 FAT506  Course code  SPT4506  Course title  Scheme and Credits  Pre- requisites  Chemistry I, II & III, Chemical reaction endineering I, Petroleum refining processes, Petrochemical technology.  Objectives of this course is to give students an overview of different types catalyst, their characterization, synthesis and application in petroleum refining and petrochemical synthesis  1 Catalyst - activation energy concept, types of catalysis, nano catalysis, green catalysis, nano catalysis, green catalysis, nano catalysis, green catalysis, steps in heterogeneous catalysis, steps in heterogeneous catalysts, steps in heterogeneous catalysts, steps in heterogeneous catalysts, their characterization, SEM, TEM, XRD.  A Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text State Text S				hydrogenation method, dewaxing,				
viz. insulating oil, transformer oil, white oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oi				deasphalting etc. Manufacturing or				
viz. insulating oil, transformer oil, white oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oil, etc. oi				grease, manufacture of specialty oils				
Suggested books.  1 Fundamentals of Petroleum Chemicals Technology by P.Belov 2 Encyclopedia of Chemical Vectoriogy, Kirk-Othmer. 3 Ulman's Encyclopedia of Industrial Chemistry 4 Dryden's Outlines of Chemical Technology 5 A Text Book on Petrochemicals, B.K.Bhaskara Rau. Outcomes CO1 Draw process flow diagrams/process block diagrams for the manufacture of various petrochemicals for the manufacture of various petrochemicals for the best choice. CO2 List out various alternatives for carrying out a particular process and provide recommendations for the best choice.  CO3 Every Course Code Course code Course title Industrial Catalysis Scheme and Credits Credits Pre- requisites Chemistry, I. Il & III, Chemical reaction energing processes, Petrochemical technology. Objectives of the course Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Cod				viz. insulating oil, transformer oil, white				
Suggested books.  1 Fundamentals of Petroleum Chemicals Technology by P.Belov 2 Encyclopedia of Chemical Vectoriogy, Kirk-Othmer. 3 Ulman's Encyclopedia of Industrial Chemistry 4 Dryden's Outlines of Chemical Technology 5 A Text Book on Petrochemicals, B.K.Bhaskara Rau. Outcomes CO1 Draw process flow diagrams/process block diagrams for the manufacture of various petrochemicals for the manufacture of various petrochemicals for the best choice. CO2 List out various alternatives for carrying out a particular process and provide recommendations for the best choice.  CO3 Every Course Code Course code Course title Industrial Catalysis Scheme and Credits Credits Pre- requisites Chemistry, I. Il & III, Chemical reaction energing processes, Petrochemical technology. Objectives of the course Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Code Course Cod								
Suggested books.  1 Fundamentals of Petroleum Chemicals Technology by P.Belov 2 Encyclopedia of Chemical Technology, Kirk-Othmer. 3 Ulmann's Encyclopedia of Industrial Chemistry 4 Dryden's Outlines of Chemical Technology 5 A Text Book on Petrochemicals, B.K.Bhaskara Rad. 6 B.K.Bhaskara Rad. 7 Draw process flow diagrams/process block diagrams for the manufacture of various petrochemicals from process description. 8 CO2 List out various alternatives for carrying out a particular process and provide recommendations for the best choice. 9 List out various alternatives for carrying out a particular process and provide recommendations for the best choice. 9 List out various alternatives for carrying out a particular process and provide recommendations for the best choice. 9 List out various alternatives for carrying out a particular process and provide recommendations for the best choice. 9 List out various alternatives for carrying out a particular process and provide recommendations for the best choice. 9 List out various alternatives for carrying out a particular process and provide recommendations for the best choice. 9 L T P Total Course title Industrial Catalysis Scheme and Credits Precent Chemistry I, II & III, Chemical reaction enquineering I. Petroleum refining processes, Petrochemical technology. 9 Objectives of this course is to give students an overview of different types catalyst, their characterization, synthesis and application in petroleum refining and petrochemical synthesis 1 Catalyst - activation energy concept, types of catalysis, enanc catalysis, green catalysis, green catalysis, enanc catalysis, prace catalysis, green catalysis, enanc catalysis, green catalysis, enanc catalysis, green catalysis, green catalysis, enanc catalysis, green catalysis, enanc catalysis, enanc catalysis, enanc catalysis, enanc catalysis, enanc catalysis, enanc catalysis, enanc catalysis, enanc catalysis, enanc catalysis, enanc catalysis, enanc catalysis, enanc catalysis, enanc catalysis, enanc catalysis, enanc catalysis,					22	_		33
Detailed Contents   Fundamentals of Petroleum Chemicals   Fundamentals of Petroleum Chemicals   Fundamentals of Petroleum Chemicals   Fundamentals of Petroleum Chemicals   Fundamentals of Chemical   Fundamentals of Chemical   Fundamentals of Chemical   Fundamentals   Fundam	Suggested	-		V ,		1		
Technology by P.Belov				00				
2   Encyclopedia of Chemical Technology, Kirk-Othmer.   3   Ulmann's Encyclopedia of Industrial Chemistry   4   Dryden's Outlines of Chemical Technology   5   A Text Book on Petrochemicals, B.K.Bhaskara Rad.   5   Encyclopedia of Industrial Chemistry   5   A Text Book on Petrochemicals, B.K.Bhaskara Rad.   6   Encyclopedia of Industrial Chemistry   7   Encyclopedia of Industrial Chemistry   8   Encyclopedia of Industrial Chemistry   9   Encyclopedia			1	Fundamentals of Petroleum Chemicals				
Kirk-Othmer.				Technology by P.Belov				
3   Ulmann's Encyclopedia of Industrial Chemistry   4   Dryden's Outlines of Chemical Technology   5   A Text Book on Petrochemicals, B.K.Bhaskara Rad.			2					
Chemistry  4 Dryden's Outlines of Chemical Technology  5 A Text Book on Petrochemicals, B.K.Bhaskara Rag.  Outcomes  CO1 Draw process flow diagrams/process block diagrams for the manufacture of various petrochemicals from process description.  CO2 List out various alternatives for carrying out a particular process and provide recommendations for the best choice.  CO3 List out various alternatives for carrying out a particular process and provide recommendations for the best choice.  Course code  SPT4506  Course title  Industrial Catalysis  Scheme and Credits  Pre- requisites  Pre- chemistry I, II & III, Chemical reaction engineering I, Petroleum refining processes, Petrochemical technology.  Objectives of the course  Objective of this course is to give students an overview of different types catalyst, their characterization, synthesis and application in petroleum refining and petrochemical synthesis  Detailed contents  1 Catalyst - activation energy concept, types of catalysis, comparison of homogeneous & heterogeneous catalysis, nano catalysis, phase transfer catalysis, nano catalysis, phase transfer catalysis, seryme catalysis, green catalysis, green catalysis, spense transfer catalyzed reactions, different kinetic models, steric effects, electronic factors.  3 Catalyst charecterization, SEM, TEM, XRD.								
4 Dryden's Outlines of Chemical Technology 5 A Text Book on Periochemicals, B.K.Bhaskara Rag. Students will Draw process flow diagrams/process block diagrams for the manufacture of various petrochemicals from process description.  CO2 List out various alternatives for carrying out a particular process and provide recommendations for the best choice.  Course code SPT4506 Course title Industrial Catalysis Scheme and Credits Pre- requisites Chemistry I, II & III, Chemical reaction engineering I, Petroleum refining processes, Petrochemical technology. Objectives of this course is to give students an overview of different types catalysts, their characterization, synthesis and application in petroleum refining and petrochemical synthesis  Detailed contents  1 Catalyst - activation energy concept, types of catalysis, comparison of homogeneous & heterogeneous catalysis, nano catalysis, phase transfer catalysis. Fundamentals of heterogeneous catalysis, speen catalysis, steps in heterogeneous catalyses, steps in heterogeneous catalyses, eractions, different kinetic models, steric effects, electronic factors.  3 Catalyst charecterization, SEM, TEM, XRD.			3					
Technology  5 A Text Book on Pekrochemicals, B.K.Bhaskara Rad.  Students will  CO1 Draw process flow diagrams/process block diagrams for the manufacture of various petrochemicals from process description.  CO2 List out various alternatives for carrying out a particular process and provide recommendations for the best choice.  Course code  SPT4506  Course title Industrial Catalysis Scheme and Credits  Pre- requisites  Chemistry I, II & III, Chemical reaction endineering I, Petroleum refining processes, Petrochemical technology.  Objectives of the course  Objective of this course is to give students an overview of different types catalyst, their characterization, synthesis and application in petroleum refining and petrochemical synthesis  Detailed contents  1 Catalyst - activation energy concept, types of catalysis, comparison of homogeneous catalysis, enzyme catalysis, green catalysis, nano catalysis, green catalysis, nano catalysis, phase transfer catalysis, sano catalysts, steps in heterogeneous catalysts, steps in heterogeneous catalysts, steps in heterogeneous catalysted reactions, different kinetic models, steric effects, electronic factors.  3 Catalyst charecterization, SEM, TEM, XRD.			<u> </u>	Chemistry				
Outcomes  Students will  Draw process flow diagrams/process block diagrams for the manufacture of various petrochemicals from process description.  List out various alternatives for carrying out a particular process and provide recommendations for the best choice.  CO2  SPT4506  Course code  SPT4506  Course title  Indust ial Catalysis  Scheme and Credits  Pre- requisites  Chymistry I, II & III, Chemical reaction engineering I, Petroleum refining processes, Petrochemical technology.  Objectives of the course  Objective of this course is to give students an overview of different types catalyst, their characterization, synthesis and application in petroleum refining and petrochemical synthesis  Detailed contents  1			4					
B.K.Bhaskara Rad.		1	<u> </u>					
Students will   Draw process flow diagrams/process   block diagrams for the manufacture of various petrochemicals from process   description.			5					
CO1 Draw process flow diagrams/process block diagrams for the manufacture of various petrochemicals from process description. List out various alternatives for carrying out a particular process and provide recommendations for the best choice.  CO2 Discourse code SPT4506 Industrial Catalysis Scheme and Credits Course title Scheme and Credits Pre- requisites Chemistry I, II & III, Chemical reaction engineering I, Petroleum refining processes, Petrochemical technology. Objectives of the course Course of the course Course title Scheme and Credits Chemistry I, II & III, Chemical reaction engineering I, Petroleum refining processes, Petrochemical technology. Dispectives of this course is to give students an overview of different types catalyst, their characterization, synthesis and application in petroleum refining and petrochemical synthesis  Detailed contents  1 Catalyst - activation energy concept, types of catalysis, comparison of homogeneous & heterogeneous catalysis, enzyme catalysis, green catalysis, nano catalysis, phase transfer catalysis.  2 Catalyst - activation cherogeneous catalysis, nano catalysis, phase transfer catalysis. Catalyst s, steps in heterogeneous catalysis catalysts, steps in heterogeneous catalysed reactions, different kinetic models, steric effects, electronic factors. Catalyst charecterization, SEM, TEM, XRD.	•	1	1					
block diagrams for the manufacture of various petrochemicals from process description.    CO2	Outcomes		1					
CO2 List out various alternatives for carrying out a particular process and provide recommendations for the best choice.  Course code  SPT4506  Course title  Industrial Catalysis Scheme and Credits  Pre- requisites  Chemistry I, II & III, Chemical reaction engineering I, Petroleum refining piocesses, Petrochemical technology.  Objectives of the course  Cotalyst, their characterization, synthesis and application in petroleum refining and petrochemical synthesis  1 Catalyst - activation energy concept, types of catalysis, comparison of homogeneous & heterogeneous catalysis, enzyme catalysis, green catalysis, green catalysis, nano catalysis, phase transfer catalysis, sensyme catalysis, sensyme catalysis, green catalysis, steps in heterogeneous catalyzed reactions, different kinetic models, steric effects, electronic factors.  3 Catalyst charecterization, SEM, TEM, XRD.		CO1		Draw process flow diagrams/process				
CO2   List out various alternatives for carrying out a particular process and provide recommendations for the best choice.   L T P Total Process and provide recommendations for the best choice.   L T P Total Process and provide recommendations for the best choice.   L T P Total Process and provide recommendations for the best choice.   L T P Total Process and provide recommendations for the best choice.   L T P Total Process and provide recommendations for the best choice.   L T P Total Process and provide recommendations for the best choice.   L T P Total Process and provide recommendations for the best choice.   L T P Total Process and provide recommendations for the best choice.   L T P Total Process and provide recommendations for the best choice.   L T P Total Process and provide recommendations for the best choice.   L T P Total Process and provide recommendations for the best choice.   L T P Total Process and provide recommendations for the best choice.   L T P Total Process and provide recommendations for the best choice.   L T P Total Process and provide recommendations for the best choice.   L T P Total Process and provide recommendations for the best choice.   L T P Total Process and provide recommendations for the best choice.   L T P Total Process and provide recommendations for the best choice.   L T P Total Process and provide recommendations for the best choice.   L T P Total Process and provide recommendations for the best choice.   L T P Total Process and provide recommendations for the best choice.   L T P Total Process and provide recommendations for the best choice.   L T P Total Process and provide recommendations for the best choice.   L T P Total Process and provide recommendations for the best choice.   L T P Total Process and provide recommendations for the best choice.   L T P Total Process and provide recommendations for the best choice.   L T T P Total Process and provide recommendations for the best choice.   L T T P Total Process and provide recommendations for the best choice.				block diagrams for the manufacture of				
Course code  Course code  Course title  Scheme and Credits  Pre- requisites  Objectives of the course  1								
out a particular process and provide recommendations for the best choice.  L T P Total  Course code  SPT4506  L IT P Total  Course title  Industrial Catalysis  Scheme and Credits  Pre- requisites  Chemistry I, II & III, Chemical reaction engineering I, Petroleum refining processes, Petrochemical technology.  Objectives of the course  Objective of this course is to give students an overview of different types catalyst, their characterization, synthesis and application in petroleum refining and petrochemical synthesis  Detailed contents  1 Catalyst - activation energy concept, types of catalysis, comparison of homogeneous & heterogeneous catalysis, enzyme catalysis, green catalysis, green catalysis, green catalysis, steps in heterogeneous catalysts, steps in heterogeneous catalyzed reactions, different kinetic models, steric effects, electronic factors.  3 Catalyst charecterization, SEM, TEM, XRD.								
Course code SPT4506 Course title Industrial Catalysis Scheme and Credits Pre- requisites Objectives of the course the course  1 Catalyst - activation energy concept, types of catalysis, enzyme catalysis, phase transfer catalysis, nano catalysis, phase transfer catalysts, steps in heterogeneous catalyst charecterization, different kinetic models, steric effects, electronic factors.  Catalyst charecterization, different kinetic models, steric effects, electronic factors.  Catalyst charecterization, synthesis of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the c		CO2						
Course code Course title Shape and Credits  Chemistry I, II & III, Chemical reaction engineering I, Petroleum refining processes, Petrochemical technology.  Objectives of the course  Catalyst, their characterization, synthesis and application in petroleum refining and petrochemical synthesis  Catalyst - activation energy concept, types of catalysis, comparison of homogeneous & heterogeneous catalysis, nano catalysis, green catalysis, nano catalysis, phase transfer catalysis, steps in heterogeneous catalyzed reactions, different kinetic models, steric effects, electronic factors.  Catalyst - activation energy concept, types of catalysis, comparison of homogeneous & heterogeneous catalysis, nano catalysis, phase transfer catalysis.  Catalysts, steps in heterogeneous catalysis, catalyst charecterization, SEM, TEM, XRD.								
Course title Course title Industrial Catalysis Scheme and Credits Pre- requisites Chemistry I, II & III, Chemical reaction engineering I, Petroleum refining processes, Petrochemical technology. Objectives of the course  Chemistry I, II & III, Chemical reaction engineering I, Petroleum refining processes, Petrochemical technology.  Objective of this course is to give students an overview of different types catalyst, their characterization, synthesis and application in petroleum refining and petrochemical synthesis  1				recommendations for the best choice.				
Course title Course title Industrial Catalysis Scheme and Credits Pre- requisites  Objectives of the course  1		1	i .		_		i _	
Course title Scheme and Credits Pre- requisites  Objectives of the course  1				C	L	Т	Р	
Scheme and Credits  Pre- requisites  Chamistry I, II & III, Chemical reaction ergineering I, Petroleum refining piocesses, Petrochemical technology.  Objectives of the course  Objective of this course is to give students an overview of different types catalyst, their characterization, synthesis and application in petroleum refining and petrochemical synthesis  Detailed contents  1	Course sade			CDTAFOG	L	Т	Р	
Credits Pre- requisites  Chemistry I, II & III, Chemical reaction engineering I, Petroleum refining processes, Petrochemical technology.  Objectives of the course  Detailed contents  1					L	Т	Р	
Pre-requisites  Chemistry I, II & III, Chemical reaction engineering I, Petroleum refining processes, Petrochemical technology.  Objectives of the course  Objective of this course is to give students an overview of different types catalyst, their characterization, synthesis and application in petroleum refining and petrochemical synthesis  Catalyst - activation energy concept, types of catalysis, comparison of homogeneous & heterogeneous catalysis, enzyme catalysis, green catalysis, nano catalysis, phase transfer catalysis.  Catalyst - activation energy concept, types of catalysis, comparison of homogeneous & heterogeneous catalysis, enzyme catalysis, green catalysis, phase transfer catalysis.  Fundamentals of heterogeneous catalysis, steps in heterogeneous catalyzed reactions, different kinetic models, steric effects, electronic factors.  Catalyst charecterization, SEM, TEM, XRD.	Course title			Industrial Catalysis	L	Т	Р	
requisites engineering I, Petroleum refining processes, Petrochemical technology.  Objectives of the course  Objective of this course is to give students an overview of different types catalyst, their characterization, synthesis and application in petroleum refining and petrochemical synthesis  Detailed contents  1	Course title Scheme and			Industrial Catalysis	L	Т	P	
Detailed contents  1	Course title Scheme and Credits			Industrial Catalysis 2L: 1T: 0P 3 Credits	L	Т	P	
Objectives of the course  Objective of this course is to give students an overview of different types catalyst, their characterization, synthesis and application in petroleum refining and petrochemical synthesis  Detailed contents  1	Course title Scheme and Credits Pre-			Industrial Catalysis 2L: 1T: 0P 3 Credits  Chemistry I, II & III, Chemical reaction	L	Т	P	
students an overview of different types catalyst, their characterization, synthesis and application in petroleum refining and petrochemical synthesis  Detailed contents  1	Course title Scheme and Credits Pre-			Industrial Catalysis 2L: 1T: 0P 3 Credits  Chemistry I, II & III, Chemical reaction engineering I, Petroleum refining	L	Т	P	
Catalyst, their characterization, synthesis and application in petroleum refining and petrochemical synthesis  Detailed contents  1	Course title Scheme and Credits Pre- requisites			Industrial Catalysis 2L: 1T: 0P 3 Credits  Chemistry I, II & III, Chemical reaction engineering I, Petroleum refining processes, Petrochemical technology.	L	Т	P	
synthesis and application in petroleum refining and petrochemical synthesis  Detailed contents  1	Course title Scheme and Credits Pre- requisites Objectives of			Industrial Catalysis 2L: 1T: OP 3 Credits  Chemistry I, II & III, Chemical reaction engineering I, Petroleum refining processes, Petrochemical technology.  Objective of this course is to give	L	Т	P	
Petailed contents  1	Course title Scheme and Credits Pre- requisites Objectives of			Industrial Catalysis 2L: 1T: OP 3 Credits  Chemistry I, II & III, Chemical reaction engineering I, Petroleum refining processes, Petrochemical technology.  Objective of this course is to give students an overview of different types	L	Т	P	
Detailed contents  1	Course title Scheme and Credits Pre- requisites Objectives of			Industrial Catalysis 2L: 1T: OP 3 Credits  Chemistry I, II & III, Chemical reaction engineering I, Petroleum refining processes, Petrochemical technology.  Objective of this course is to give students an overview of different types catalyst, their characterization,	L	Т	P	
Catalyst - activation energy concept, types of catalysis, comparison of homogeneous & heterogeneous catalysis, enzyme catalysis, green catalysis, nano catalysis, phase transfer catalysis.  2 Fundamentals of heterogeneous catalysts, steps in heterogeneous catalyzed reactions, different kinetic models, steric effects, electronic factors.  3 Catalyst charecterization, SEM, TEM, XRD.	Course title Scheme and Credits Pre- requisites Objectives of		1	Industrial Catalysis 2L: 1T: OP 3 Credits  Chemistry I, II & III, Chemical reaction engineering I, Petroleum refining processes, Petrochemical technology.  Objective of this course is to give students an overview of different types catalyst, their characterization, synthesis and application in petroleum	L	Т	P	
Catalyst - activation energy concept, types of catalysis, comparison of homogeneous & heterogeneous catalysis, enzyme catalysis, green catalysis, nano catalysis, phase transfer catalysis.  2 Fundamentals of heterogeneous catalysts, steps in heterogeneous catalyzed reactions, different kinetic models, steric effects, electronic factors.  3 Catalyst charecterization, SEM, TEM, XRD.	Course title Scheme and Credits Pre- requisites Objectives of		2	Industrial Catalysis 2L: 1T: OP 3 Credits  Chemistry I, II & III, Chemical reaction engineering I, Petroleum refining processes, Petrochemical technology.  Objective of this course is to give students an overview of different types catalyst, their characterization, synthesis and application in petroleum	L	Т	P	
1 Catalyst - activation energy concept, types of catalysis, comparison of homogeneous & heterogeneous catalysis, enzyme catalysis, green catalysis, nano catalysis, phase transfer catalysis.  2 Fundamentals of heterogeneous catalysts, steps in heterogeneous catalyzed reactions, different kinetic models, steric effects, electronic factors.  3 Catalyst charecterization, SEM, TEM, XRD.	Course title Scheme and Credits Pre- requisites Objectives of the course		4	Industrial Catalysis 2L: 1T: OP 3 Credits  Chemistry I, II & III, Chemical reaction engineering I, Petroleum refining processes, Petrochemical technology.  Objective of this course is to give students an overview of different types catalyst, their characterization, synthesis and application in petroleum	L	Т	P	
types of catalysis, comparison of homogeneous & heterogeneous catalysis, enzyme catalysis, green catalysis, nano catalysis, phase transfer catalysis.  2 Fundamentals of heterogeneous catalysts, steps in heterogeneous catalyzed reactions, different kinetic models, steric effects, electronic factors.  3 Catalyst charecterization, SEM, TEM, XRD.	Course title Scheme and Credits Pre- requisites Objectives of the course  Detailed		40	Industrial Catalysis 2L: 1T: OP 3 Credits  Chemistry I, II & III, Chemical reaction engineering I, Petroleum refining processes, Petrochemical technology.  Objective of this course is to give students an overview of different types catalyst, their characterization, synthesis and application in petroleum	L	Т	P	
homogeneous & heterogeneous catalysis, enzyme catalysis, green catalysis, nano catalysis, phase transfer catalysis.  2 Fundamentals of heterogeneous catalysts, steps in heterogeneous catalyzed reactions, different kinetic models, steric effects, electronic factors.  3 Catalyst charecterization, SEM, TEM, XRD.	Course title Scheme and Credits Pre- requisites Objectives of the course  Detailed	1	7	Industrial Catalysis 2L: 1T: OP 3 Credits  Chemistry I, II & III, Chemical reaction engineering I, Petroleum refining processes, Petrochemical technology.  Objective of this course is to give students an overview of different types catalyst, their characterization, synthesis and application in petroleum refining and petrochemical synthesis			P	al
catalysis, enzyme catalysis, green catalysis, nano catalysis, phase transfer catalysis.  2 Fundamentals of heterogeneous catalysts, steps in heterogeneous catalyzed reactions, different kinetic models, steric effects, electronic factors.  3 Catalyst charecterization, SEM, TEM, XRD.	Course title Scheme and Credits Pre- requisites Objectives of the course  Detailed	1 (	400	Industrial Catalysis 2L: 1T: OP 3 Credits  Chemistry I, II & III, Chemical reaction engineering I, Petroleum refining processes, Petrochemical technology.  Objective of this course is to give students an overview of different types catalyst, their characterization, synthesis and application in petroleum refining and petrochemical synthesis  Catalyst - activation energy concept,			P	al
catalysis, nano catalysis, phase transfer catalysis.  2 Fundamentals of heterogeneous catalysts, steps in heterogeneous catalyzed reactions, different kinetic models, steric effects, electronic factors.  3 Catalyst charecterization, SEM, TEM, XRD.	Course title Scheme and Credits Pre- requisites Objectives of the course  Detailed	1	400	Industrial Catalysis 2L: 1T: OP 3 Credits  Chemistry I, II & III, Chemical reaction engineering I, Petroleum refining processes, Petrochemical technology.  Objective of this course is to give students an overview of different types catalyst, their characterization, synthesis and application in petroleum refining and petrochemical synthesis  Catalyst - activation energy concept, types of catalysis, comparison of			P	al
catalysis.  Fundamentals of heterogeneous catalysts, steps in heterogeneous catalyzed reactions, different kinetic models, steric effects, electronic factors.  Catalyst charecterization, SEM, TEM, XRD.	Course title Scheme and Credits Pre- requisites Objectives of the course  Detailed	1 7	200	Industrial Catalysis  2L: 1T: OP 3 Credits  Chemistry I, II & III, Chemical reaction engineering I, Petroleum refining processes, Petrochemical technology.  Objective of this course is to give students an overview of different types catalyst, their characterization, synthesis and application in petroleum refining and petrochemical synthesis  Catalyst - activation energy concept, types of catalysis, comparison of homogeneous & heterogeneous			P	al
Fundamentals of heterogeneous catalysts, steps in heterogeneous catalyzed reactions, different kinetic models, steric effects, electronic factors.  Catalyst charecterization, SEM, TEM, XRD.	Course title Scheme and Credits Pre- requisites Objectives of the course  Detailed	1 70	200	Industrial Catalysis  2L: 1T: OP 3 Credits  Chemistry I, II & III, Chemical reaction engineering I, Petroleum refining processes, Petrochemical technology.  Objective of this course is to give students an overview of different types catalyst, their characterization, synthesis and application in petroleum refining and petrochemical synthesis  Catalyst - activation energy concept, types of catalysis, comparison of homogeneous & heterogeneous catalysis, enzyme catalysis, green			P	al
catalysts, steps in heterogeneous catalyzed reactions, different kinetic models, steric effects, electronic factors.  3 Catalyst charecterization, SEM, TEM, XRD.	Course title Scheme and Credits Pre- requisites Objectives of the course  Detailed	17070	200	Industrial Catalysis  2L: 1T: OP 3 Credits  Chemistry I, II & III, Chemical reaction engineering I, Petroleum refining processes, Petrochemical technology.  Objective of this course is to give students an overview of different types catalyst, their characterization, synthesis and application in petroleum refining and petrochemical synthesis  Catalyst - activation energy concept, types of catalysis, comparison of homogeneous & heterogeneous catalysis, enzyme catalysis, green catalysis, nano catalysis, phase transfer			P	al
catalyzed reactions, different kinetic models, steric effects, electronic factors.  3 Catalyst charecterization, SEM, TEM, XRD.	Course title Scheme and Credits Pre- requisites Objectives of the course  Detailed	1 00	200	Industrial Catalysis  2L: 1T: OP 3 Credits  Chemistry I, II & III, Chemical reaction engineering I, Petroleum refining processes, Petrochemical technology.  Objective of this course is to give students an overview of different types catalyst, their characterization, synthesis and application in petroleum refining and petrochemical synthesis  Catalyst - activation energy concept, types of catalysis, comparison of homogeneous & heterogeneous catalysis, enzyme catalysis, green catalysis, nano catalysis, phase transfer catalysis.	2	1	P	3
models, steric effects, electronic factors.  Catalyst charecterization, SEM, TEM, XRD.	Course title Scheme and Credits Pre- requisites Objectives of the course  Detailed	1 00	8	Industrial Catalysis  2L: 1T: OP 3 Credits  Chemistry I, II & III, Chemical reaction engineering I, Petroleum refining processes, Petrochemical technology.  Objective of this course is to give students an overview of different types catalyst, their characterization, synthesis and application in petroleum refining and petrochemical synthesis  Catalyst - activation energy concept, types of catalysis, comparison of homogeneous & heterogeneous catalysis, enzyme catalysis, green catalysis, nano catalysis, phase transfer catalysis.  Fundamentals of heterogeneous	2	1	P	3
3 Catalyst charecterization, SEM, TEM, XRD.	Course title Scheme and Credits Pre- requisites Objectives of the course  Detailed	1	200	Industrial Catalysis  2L: 1T: OP 3 Credits  Chemistry I, II & III, Chemical reaction engineering I, Petroleum refining processes, Petrochemical technology.  Objective of this course is to give students an overview of different types catalyst, their characterization, synthesis and application in petroleum refining and petrochemical synthesis  Catalyst - activation energy concept, types of catalysis, comparison of homogeneous & heterogeneous catalysis, enzyme catalysis, green catalysis, nano catalysis, phase transfer catalysis.  Fundamentals of heterogeneous catalysts, steps in heterogeneous	2	1	P	3
	Course title Scheme and Credits Pre- requisites Objectives of the course  Detailed	1 70 O2 P	200	Industrial Catalysis  2L: 1T: OP 3 Credits  Chemistry I, II & III, Chemical reaction engineering I, Petroleum refining processes, Petrochemical technology.  Objective of this course is to give students an overview of different types catalyst, their characterization, synthesis and application in petroleum refining and petrochemical synthesis  Catalyst - activation energy concept, types of catalysis, comparison of homogeneous & heterogeneous catalysis, enzyme catalysis, green catalysis, nano catalysis, phase transfer catalysis.  Fundamentals of heterogeneous catalysts, steps in heterogeneous catalyzed reactions, different kinetic	2	1	P	3
4 Redox catalysts, Acid/Base catalysts, 4 2 6	Course title Scheme and Credits Pre- requisites Objectives of the course  Detailed	P. Q.2	200	Industrial Catalysis  2L: 1T: OP 3 Credits  Chemistry I, II & III, Chemical reaction engineering I, Petroleum refining processes, Petrochemical technology.  Objective of this course is to give students an overview of different types catalyst, their characterization, synthesis and application in petroleum refining and petrochemical synthesis  Catalyst - activation energy concept, types of catalysis, comparison of homogeneous & heterogeneous catalysis, enzyme catalysis, green catalysis, nano catalysis, phase transfer catalysis.  Fundamentals of heterogeneous catalysts, steps in heterogeneous catalyzed reactions, different kinetic models, steric effects, electronic factors.  Catalyst charecterization, SEM, TEM,	2	1	P	3
	Course title Scheme and Credits Pre- requisites Objectives of the course  Detailed	2 2 3	200	Indust. ial Catalysis  2L: 1T: OP 3 Credits  Chemistry I, II & III, Chemical reaction engineering I, Petroleum refining processes, Petrochemical technology.  Objective of this course is to give students an overview of different types catalyst, their characterization, synthesis and application in petroleum refining and petrochemical synthesis  Catalyst - activation energy concept, types of catalysis, comparison of homogeneous & heterogeneous catalysis, enzyme catalysis, green catalysis, nano catalysis, phase transfer catalysis.  Fundamentals of heterogeneous catalysts, steps in heterogeneous catalyzed reactions, different kinetic models, steric effects, electronic factors.  Catalyst charecterization, SEM, TEM, XRD.	2 2	1	P	3

	T						
			Supported catalysts, Metal catalysts,				
			bimetallic catalysts, promoters,				
	5		inhibitors.  Methods for synthesis of catalysts:	6	3		9
	3		precipitation, fusion and alloy leaching,	0	)		9
			sol -gel synthesis, hydrothermal				
			synthesis, impregnation,				
			coprecipitation, adsorption/ion				
			exchange.				
	6		Zeolite catalysts , composition and	4	2		6
			structure of zeolites, reactant				
			selectivity, product selectivity, acidity of				
			zeolites, Applications of zeolites in				
			petroleum refinery and petrochemical				
			synthesis.	_	_		
	7		Catalyst deactivation, poisoning of	4	2		6
			metalic catalyst, oxides and solid acids, thermal processes and sintering,				
			regeneration and recycling of				
			heterogeneous catalysts.				
			Total	24	1		33
			^)		2		
Suggested			2/				
books.			. 0				
		1	Handbook of Hete ogeneous Catalysis				
			by Gerhard Ertl, 2008				
		2	Concepts of Modern Catalysis and				
			Kinetics, Second Edition. I.				
		3	Chorkendorff, J. W. Niemantsverdriet  Elements of Chemical Reaction				
		3	Engineering by H. Scott Fogler				
		4	Industrial catalysis: A practical approach				
		"	by Jens Hagen				
Outcomes			Students will				
	CO1		understand importance of				
			heterogeneous catalysis.				
	CO2		know different catalyst characterization				
			techniques				
	CO3		Understand mass and heat transport				
			phenomena occurring during catalytic				
	604		reactions				
	CO4		learn different methods of catalyst synthesis				
<u> </u>	<u> </u>	<u> </u>	3)    (1)    (2)    (3)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4)    (4	L	Т	P	Tot
			C	L			al
Course code		- 1	SPT4507				u.
Course title		, 1	Petroleum economics and				
		7	management				
Scheme and		0,	2L: 1T: 0P 3 Credits				
Credits		Y Y					
Pre-		0	Introduction to petroleum technology,				
requisites	),	U	Petroleum refining processes,				
Objectives of	-	Ĭ -	Petrochemical technology.  To provide students with an				
Objectives of the course	٠,0		understanding of global petroleum				
the course			market, tools of economic analysis of				
	0		petroleum project and key management				
	0,		concepts related to oil and gas industry.				
-	De						
Detailed	1						
contents	<u> </u>			_			
	1		Introduction to oil and gas industry:	2	1		3
			World oil and gas supply and demand,				
			structure of oil and gas business, oil and				

			gas reserves, crude oil pricing and			
			volatility, Oil and gas industry value			
			chain. International & National Institutions of Oil & Gas: API,OPEC,			
			OECD, OIDB, DGH, PNGRB, CHT, PII,			
			PPAC, PCRA.			
	2		Indian oil and gas industry, oil resreves,	2	1	3
	-		Strategic Reserves concepts, crude oil	_	_	
			import statistics, government policies			
			and laws related to petroleum and			
			petrochemical industry, petroleum			
			contracts, Indian petrochemical market,			
			major products, imort and export			
			statistics for India, factors affecting			
			pricing. Overview of major Ingian oil &			
			gas and petrochemical companies.			
	3		Upstream economics: main challenges,	4	2	6
			Finding oil, access and development			
			rights, leasing and exploration, key			
			figures in upstream, players: IOC, NOC,			
			Independents, contractors etc.,			
			reservoir management, upstream			
			profitability, Midstream: Trading and			
	4		crude transportation  Downstream economics : Refining and	3	1	4
	4		marketing, Refining economics: Current	3	_	4
			refining context, refining costs, refining			
			margins and profitability. Sales and			
			marketing of petroleum products,			
			costing of major petroleum products:			
			motor fuel, aviation fuel, lubricants, fuel			
			oils, asphalts			
	5		Petrochemicals economics:	4	2	6
			Petrochemical products- base,			
			intermediate and consumable products,			
			petrochemical Industry structure,			
			capital investement, Economic analysis			
			of key processes: eg. olefine production,			
			ethane cracking, LPG cracking.			
	<del>  _</del>		Marketing and distribution.	_	_	
	6		Oil and gas project management:	3	1	4
			Developemnt of project, joint			
			de relopments, contractor relationships,			
			cost management, partenership			
			management, political risks, innovations and technology, fiscal regimes,			
		4	financing and financial performance.			
	7	. \	Project Risk Analysis: Definition of risk,	3	1	4
	'	7	sources of project uncertainty, impact of	3	-	-
		3	government regulations, methods of			
		V	risk analysis, managing attitudes			
		Ò	towards risk, expected utility theory,			
	- (	7,	assessing the utility function, risk			
	\	Y	premium and risk aversion.			
	8/~		Recent advances, Future of the Global	2	1	3
	10		Oil and Gas Industry, analysis of			
	Δ,		petroleum alternatives for energy and			
	X		speciality chemicals.			
	Q9		Case studies.	2	1	3
	V.,		Total	25	1	36
	,				1	
Suggested						
books.		1	Fundamentale of Oil and Con Assessed			
1		1	Fundamentals of Oil and Gas Accounting - Charlotte Wright			
ļ						

		2	Petrochemical Economics: Technology				
			Selection in a Carbon Constrained World				
			by D. Seddon				
		3	The Global Oil & Gas Industry:				
			Management, Strategy and Finance by				
			Andrew Inkpen, Michael H. Moffett				
		4	Petroleum economics and engineering				
			by Hussein K. Abdel-Aal, Mohammed A.				
			Alsahlawi.				
		5	Project management for the oil and gas				
			industry : a world system approach by				
			Adedeji Badiru, Samuel Osisanya				
Outcomes			Students will				
	CO1		get knowledge of the role of oil and gas				
			industry in global economy.				
	CO2		understand the key business issues				
			related to energy markets, pricing,				
			project finance, energy policy and				
			geopolitical issues impacting the Oil and				
			Gas industry.				
	СОЗ		be able to perform economics analysis				
			for the petrochemical business				
	CO4	+	able to explain the fundamental				
			concepts of oil and gas industrial				
			Management				
	<u> </u>	I I	Management				Tot
			. ()	L	Т	P	al
Course code			SPP4301				aı
Course code		-	Petroleum Characterization				
Course title			Laboratory-I				
Scheme and			()		+		
Credits			OL: OT: 4P 2 Credits				
Pre-			Chemistry I, Introduction to petroleum				
requisites			technology.				
			To apply various testing methods for				
Objectives of			assessing various properties of				
the course			petroleum products.				
			petroleum products.				
Detailed			A				
contents			K				
Contents			Determination of vanagination		+		
		1	Determination of vaporization				
	1						
		-	characteristics of given petroleum				
		_	product by ASTM distillation.				
		2	product by ASTM distillation.  Determination of flash point and fire				
			product by ASTM distillation. Determination of flash point and fire point.				
			product by ASTM distillation. Determination of flash point and fire point. Determination of diesel index of given				
		2	product by ASTM distillation. Determination of flash point and fire point. Determination of diesel index of given petroleum sample.				
		2	product by ASTM distillation.  Determination of flash point and fire point.  Determination of diesel index of given petroleum sample.  Determination of carbon residue of				
		2	product by ASTM distillation.  Determination of flash point and fire point.  Determination of diesel index of given petroleum sample.  Determination of carbon residue of given petroleum fraction.				
		2 3	product by ASTM distillation.  Determination of flash point and fire point.  Determination of diesel index of given petroleum sample.  Determination of carbon residue of given petroleum fraction.  Determination of drop point of given				
		2	product by ASTM distillation.  Determination of flash point and fire point.  Determination of diesel index of given petroleum sample.  Determination of carbon residue of given petroleum fraction.  Determination of drop point of given sample.				
	.0	2 3 4 5	product by ASTM distillation.  Determination of flash point and fire point.  Determination of diesel index of given petroleum sample.  Determination of carbon residue of given petroleum fraction.  Determination of drop point of given sample.  Determination of viscosity of given				
		2 3	product by ASTM distillation.  Determination of flash point and fire point.  Determination of diesel index of given petroleum sample.  Determination of carbon residue of given petroleum fraction.  Determination of drop point of given sample.  Determination of viscosity of given petroleum sample.				
	3	2 3 4 5 6	product by ASTM distillation.  Determination of flash point and fire roint.  Determination of diesel index of given petroleum sample.  Determination of carbon residue of given petroleum fraction.  Determination of drop point of given sample.  Determination of viscosity of given petroleum sample.  Determination of cloud point and pour				
	,0	2 3 4 5 6 7	product by ASTM distillation.  Determination of flash point and fire roint.  Determination of diesel index of given petroleum sample.  Determination of carbon residue of given petroleum fraction.  Determination of drop point of given sample.  Determination of viscosity of given petroleum sample.  Determination of cloud point and pour point.				
	40	2 3 4 5 6	product by ASTM distillation.  Determination of flash point and fire roint.  Determination of diesel index of given petroleum sample.  Determination of carbon residue of given petroleum fraction.  Determination of drop point of given sample.  Determination of viscosity of given petroleum sample.  Determination of cloud point and pour point.  Determination of the smoke point.				
	,0	2 3 4 5 6 7 8	product by ASTM distillation.  Determination of flash point and fire roint.  Determination of diesel index of given petroleum sample.  Determination of carbon residue of given petroleum fraction.  Determination of drop point of given sample.  Determination of viscosity of given petroleum sample.  Determination of cloud point and pour point.  Determination of the smoke point.  Determination of calorific value of fuel				
	000	2 3 4 5 6 7	product by ASTM distillation.  Determination of flash point and fire point.  Determination of diesel index of given petroleum sample.  Determination of carbon residue of given petroleum fraction.  Determination of drop point of given sample.  Determination of viscosity of given petroleum sample.  Determination of cloud point and pour point.  Determination of the smoke point.  Determination of calorific value of fuel by Bomb calorimeter.				
	000	2 3 4 5 6 7 8	product by ASTM distillation.  Determination of flash point and fire roint.  Determination of diesel index of given petroleum sample.  Determination of carbon residue of given petroleum fraction.  Determination of drop point of given sample.  Determination of viscosity of given petroleum sample.  Determination of cloud point and pour point.  Determination of the smoke point.  Determination of calorific value of fuel				48
Suggested	000	2 3 4 5 6 7 8	product by ASTM distillation.  Determination of flash point and fire point.  Determination of diesel index of given petroleum sample.  Determination of carbon residue of given petroleum fraction.  Determination of drop point of given sample.  Determination of viscosity of given petroleum sample.  Determination of cloud point and pour point.  Determination of the smoke point.  Determination of calorific value of fuel by Bomb calorimeter.				48
Suggested books.	000	2 3 4 5 6 7 8	product by ASTM distillation.  Determination of flash point and fire point.  Determination of diesel index of given petroleum sample.  Determination of carbon residue of given petroleum fraction.  Determination of drop point of given sample.  Determination of viscosity of given petroleum sample.  Determination of cloud point and pour point.  Determination of the smoke point.  Determination of calorific value of fuel by Bomb calorimeter.  Total				48
	000	2 3 4 5 6 7 8 9	product by ASTM distillation.  Determination of flash point and fire point.  Determination of diesel index of given petroleum sample.  Determination of carbon residue of given petroleum fraction.  Determination of drop point of given sample.  Determination of viscosity of given petroleum sample.  Determination of cloud point and pour point.  Determination of the smoke point.  Determination of calorific value of fuel by Bomb calorimeter.  Total  Handbook of Petroleum Analysis by G.G				48
	000	2 3 4 5 6 7 8	product by ASTM distillation.  Determination of flash point and fire point.  Determination of diesel index of given petroleum sample.  Determination of carbon residue of given petroleum fraction.  Determination of drop point of given sample.  Determination of viscosity of given petroleum sample.  Determination of cloud point and pour point.  Determination of the smoke point.  Determination of calorific value of fuel by Bomb calorimeter.  Total				48

			B.K. Bhaskara Rao.				
		3	ASTM Standard Manual				
Outcomes			Student will be able to				
	CO1		Describe the basic principles of different				
	COI		petroleum characterization techniques.				
	CO2		Suggest possible characterization				
	CO2		techniques for given petroleum sample.				
	СОЗ		Strengthen the theoretical knowledge of				
	100		petroleum products.				
			\frac{1}{2}	L	т	P	Tot
			0,	_		•	al
Course code			SPP4403				
Course title			Petroleum laboratory-II				
Scheme and Credits			0L: 0T: 4P 2 Credits				
Pre-			Refinery engineering, Petroleum refining				
requisites			processes, Simulation Lab I and II				
			In this course students will enhance				
Objectives of			their knowledge of design and				
the course			optimization of various refinery operations with the help of professional				
			software				
			Software				
Detailed			, 0				
contents			<u> </u>				
		_	Determination of bromine number by				
		1	color indicator method.				
			Determination of the penetration index				
		2	of petroleum sample. Determination of				
			Electrical strength of transformer oil.				
		3	Determination of water content by Dean and stark method.				
		4	Detection of copper strip corrosion of				
		4	petroleum product.				
		5	Designing of debutanizer column using				
			ASPEN				
		6	Designing of atmospheric distillation unit (ADU)				
		7	Designing of vacuum distillation unit (VDU)				
		8	Designing of naptha reformer				
		9	Designing of FCC unit				
			Total				48
Suggested books.		-	C ^o				
		, (	Distillation design and control using				
		1,1	Aspen simulation by WL Luben				
		Fa.	Process simulation and control using				
		Ø)	ASPENTM				
	ļ	3	ASPEN Manual				
		4	Handbook of Petroleum Analysis by G.G				
0	- 4	U	Speight.				
Outcomes	<i>~</i>	-	Student will be able to				
	col		Strengthen the theoretical knowledge				
	~	-	of refinery operations design.				
	<b>602</b>		Be able to suggest possible characterization techniques for given				
	002		petroleum sample.				
	100		petroleum sumple.				

Course code	SPT3201
Course title	Special Subject I - Reservoir Technology

Scheme and		2 L: 1 T: 0 P 3 Credits	
Credits			
Pre-requisites		Chemistry and Physics learnt at +2 level	
Objectives of t	he	This is an introductory course in Petroleum Technology, which	covers the
course		chemistry of hydrocarbons, its formation and upstream process	sing.
Course title		Detailed contents	Total contact
			h
	1	Introduction to oil and gas sector, Origin and occurrence of	
		petroleum, History of petroleum in India and scope, Theories	
		of formation, Geology of petroleum rock, Classification of	6
		rocks, Reservoir rock properties (porosity, permeability,	U
		wettability), Sedimentary rocks, Structure of traps for oil and gas	
	2	Exploration techniques – surface and sub-surface methods	
		(geological, geophysical, geochemical, etc.) Types of surveys, Remote sensing technology	4
	3	Drilling of oil well, Types of drilling, Drilling bits, Drilling fluid	
		and its application, Cementing, fracturing of oil well,	
Special Subject		Completion and testing of oil wells, logging and primary	8
[		recovery	
	4	Well testing and production of crude oil, Free flow,	
		Mechanical pump flow, Material Balance of reservoir	6
	5	Enhanced oil recovery, Water flooding, Chemical and Polymer	
		Flooding, Microbial enhanced oil recovery, Secondary and	6
		Tertiary oil recovery	
	6	Separation of oil and condensates, stabilization, desalting	
		and dehydration, Transporting of crude oil, Classification of	6
		crude oil - physical properties (API, Sulfur content, UOP	U
		Characterization, etc.)	
		Total	36
Suggested		4. Fundamental Aspects of Petroleum geochemistry: Negi and	Colombo
text/referenc		5. Modern Petroleum Technology : G D Hobson and W Pohl	
e books		<ul><li>6. An introduction to Physics and Chemistry of Petroleum : R R</li><li>7. Reservoir Engineering Handbook: Tarek Ahmad</li></ul>	F Kinghorn
Outcomes	Stu	dents will be able to	
		Understand the formation of crude oil inside the earth crust	
		<ul> <li>Analyse the various sensing techniques to detect oil and gas</li> </ul>	reservoirs
		<ul> <li>Have the fundamental knowledge of drilling fluids a</li> </ul>	
		. V	na anning
		techniques	maaam:=!
		<ul> <li>Understand the various steps in production of crude oil from</li> </ul>	reservoir.

	V-					
Course code	SPT3302					
Course title	Special Subject II - Fundamentals of Refineries					
Scheme and	2 L: 1 T: 0 P 3 Credits					
Credits	, Y					
Pre-requisites	Chemistry and Physics learnt at +2 level, Basic knowledge of p	etroleum				
	v formation and production					
Objectives of the	This course will cover the various processes and products invo	This course will cover the various processes and products involved in				
course	refinery operation. Refinery operations includes physical separ	refinery operation. Refinery operations includes physical separation,				
- (	thermal operations (Cracking, coking, etc.) and catalytic upgra	dation of				
0,	crude oil (Catalytic cracking, reforming, isomerization, polymer	rization,				
O _X	etc.).					
Course title	Detailed contents	Total				
Ψ,		contact				
		h				
Special Subject 1	Brief review of Petroleum, Its composition, Non-hydrocarbon	6				
1	impurities, Characterization and classification of crude oil,					
	Pretreatment methods, General refinery set-up and various					

processes  2 Refinery product pattern, Fractionation concept, Atmospheric	
2   Refinery product pattern Fractionation concept Atmospheric	
Distillation Unit, Vacuum Distillation Unit, Indian	
Specifications of important petroleum products and its	
testing methods	
3 Thermal processes to upgrade crude residues – Visbreaking,	
Thermal Cracking and Coking process. Their types and	
reactor configuration	
4 Catalytic processes to upgrade petroleum products -	
Catalytic cracking, Reforming, Isomerization, Polymerization,	)
Hydrotreatments, etc.	
5 Finishing processes in modern refinery – blending, dewaxing,	
solvent extraction, etc. Application of advanced analysis	
techniques (UV, MS, IR, NMR, GLC, etc.) in petroleum and	
product analysis	
Total 30	5
Suggested 8. Petroleum Refining Engineering: W L Nelson	
text/referenc 9. Modern Petroleum Technology: G D Hobson and W Pohl	
e books 10. The Chemistry and Technology of Petroleum : James G Speight	
11. Petroleum refining, Technology and Economics : J H Gary and G E	
Handwork	
Outcomes Students will be able to	
<ul> <li>Understand the product pattern in the refinery based on supply</li> </ul>	and
demand	
Understand the various thermal and catalytic operations in refinery	,
Evaluate and analyse the petroleum product specifications	
Analyse the need of Indian petroleum industry.	

Course code		SPT3403				
Course title		Special Subject III - Fluidization Engineering				
Scheme and		2 L: 1 T: 0 P 3 Credits				
Credits		,0				
Pre-requisites		Mass transfer operation, Heat transfer, Momentum transfer, Chemical				
		reaction engineering				
Objectives of t	he	This course will cover the fundamentals of fluidization and its a	pplication			
course		in various chemical/petroleum processes.				
Course title		Detailed contents	Total			
		. 0)	contact			
		χ	h			
Special Subject	1	The phenomenon of fluidization; Advantages and				
1		disadvantages of fluidized beds over packed bed and moving	4			
		bed; Industrial applications of fluidized beds				
	2	Characteristics of solids: Classification of solids; Flow				
		characteristics and its outline in the different types of	4			
		fluidization				
	3	Flow pattern of fluidization system: Flow patter, flow pattern				
		transition ,flow pattern map, Frictional pressure drop and its	8			
		model to analyze, Solid movement, mixing, segregation and	O			
	_\	staging				
	40	Gas distribution: Type of gas distributors in small and large	4			
	10	scale industries, Design of distributor.	4			
	<b>5</b>	Bubbling fluidized beds: Gas dispersion and gas interchange	2			
	7	in bubbling beds, mixing characteristics	2			
15	6	Mass transfer phenomena: Particle togas mass transfer				
Y		phenomena and its analysis by model in two and three phase	4			
		system and modeling				
	7	Heat Transfer phenomena: Heat transfer between fluidized	4			
		beds and surfaces and modeling				
	8	Design of fluidized bed reactors: Design for physical	6			

	operation, catalytic and non-catalytic systems				
	Total	36			
Suggested	12. Fluidization Engineering: D. Kunii and O. Levenspiel				
text/referenc	13. Particle Technology and Engineering : Jonathan P.K. Seville C	huan-Yu			
e books	Wu				
	14. Handbook of Fluidization and Fluid-Particle Systems: Wen-Ch	ning Yang			
Outcomes	Students will be able to				
	<ul> <li>Understand concept of fluidized bed</li> </ul>				
	Evaluate the types of fluidization based on particle properties as well				
	as feed velocity				
	<ul> <li>Analyse the need of fluidization in chemical as well as pet</li> </ul>	rochemical			
	industry.				
	<ul> <li>Understand the working of various geometries of fluidizing b</li> </ul>	ed			

Course code	SPT3404					
Course title		Special Subject IV Introduction to Detrochemicals				
Course title Scheme and		Special Subject IV - Introduction to Petrochemicals  2 L: 1 T: 0 P 3 Credits				
Credits		Z L: I I: UP 3 CIECILS				
Pre-requisites		Basic knowledge of Chemistry at +2 level				
Objectives of t	hρ	This course covers the fundamentals as well as state of art de	velonment			
course		in petrochemical industry	velopinene			
Course title		Detailed contents	Total			
		.0	contact			
		*-	h			
	1	History and importance of Petrochemical industry, growth in India, Classification of Petrochemicals, Feedstock of the Petrochemicals, Preparation of feedstrock from ethane/propane and naphtha/gas oil cracking, syngas.	6			
	2	Petrochemicals from C1, C2, C3, C4 and Syngas Ethylene to ethylene oxide, ethylene glycol, ethanol amine; Propylene to acrylic acid, methyl ethyl ketone, acrylonitrile and Butenes to iso and n butanols, MIBK, MTBE	12			
Special Subject	3	Petrochemicals from BTX aromatics, naphathalene etc. Aromatics to maleic and phathalic anhydride, DMT, phenols and acetones	8			
	4	Polymerization - polyethylene, polypropylene, synthetic rubbers etc.	4			
	5	Hydration: Technologies for production of alcohols such as ethanol isobutyl alcohol and higher alcohols. Esterification: Process for production of few esters such as acrylates, terepathalates, ester for flavoring industries etc.	6			
Suggested		Total	36			
text/referenc e books		<ul><li>15. Chemicals from Petroleum: A. L. Waddams,</li><li>16. Petrochemical Processes 1 &amp; 2: Chauvel and B. Lefebvre</li><li>17. Introduction to Petrochemicals: S. K. Maiti</li></ul>				
Outcomes	Stu	lents will be able to				
	20,0	<ul> <li>Understand petrochemical Industries, its requirement and usefulness</li> <li>Understand and analyse the manufacturing of petrochemical feedstock</li> <li>Understand the complexity in technology for different petrochemicals</li> </ul>				

Course code	SPT3405
Course title	Special Subject V- CNG and LNG Technology
Scheme and	2 L: 1 T: 0 P 3 Credits
Credits	
Pre-requisites	Primary knowledge of Petroleum refining technology, Chemical
	Engineering Thermodynamics
Objectives of the	This course covers the essential treatments in utilizing natural gas as fuel

course		
Course title	Detailed contents	Total contact h
	Overview of natural gas industry, sources of natural gas, composition, properties and its classification	6
	Pretreatment processes for natural gas – hydrotreatment, dehydration, metal recovery, liquefaction, etc.	8
Special Subject	3 CNG - Fundamentals, compression strategy, Thermodynamics, types of compressor, capacity, power calculations, storage, transportation and safety	12
	4 LNG - Pretreatments, liquefaction cycles, cost, storage, transportation and safety	10
	Total	36
Suggested text/referenc e books	18. Natural Gas Processing: A. Bahadori 19. Natural Gas Production Engineering: C. U. Ikoku 20. Fundamentals of Natural Gas Processing: L. L. Faulkner	
Outcomes	Students will be able to	ndustry
	Understand the various thermodynamic cycles and process and LNG	=

		/\				
Course code		SPT3506				
Course title		Special Subject VI- Hydrotreatment Technology				
Scheme and		2 L: 1 T: 0 P 3 Credits				
Credits		'//				
Pre-requisites		Primary knowledge of Petroleum refining technology, Chemical Reaction				
		Engineering, Mass cransfer operation.				
Objectives of t	he	This course covers the role of hydrotreatments commonly used	d in			
course		petroleum refining				
Course title		/ Detailed contents	Total			
		O	contact			
		1.	h			
	1	Hydrotretments and types, pretreatment, quality	4			
		improvement, product finishing treatment	4			
	2	Source of hydrogen in refinery, process chemistry,	4			
		purification and storage	4			
	3	Hydrodesulfurization, process configuration, reactor types,	10			
Special Subject		catalysts, process parameters, feedstock preparation.	10			
1	4	Hydrocracking, commercial processes, catalyst, feed	10			
		preparation, process parameters	10			
	5	Hydrcvisbreaking, Asphaltenic Bottom Cracking process	4			
	6	Hydrotreatment for products, heteroatom removal such as	4			
		sulfur and nitrogen	4			
		Total	36			
Suggested		21. Modern Petroleum Technology : G D Hobson and W Pohl	•			
text/referenc		22. The Chemistry and Technology of Petroleum : J. G Speight				
e books	7	23. Petroleum Refining Processs: J. G. Speight and B. Ozum				
Outcomes	Stud	dents will be able to				
	.(	<ul> <li>Understand the importance of hydro-processes petroleum in</li> </ul>	ndustry			
	Ο,	<ul> <li>Analyse and understand the various processes in petroleum</li> </ul>	-			
	0,	<ul> <li>Understand the complexity of refinery operations.</li> </ul>	- ······ <b>3</b>			
- Officerstand the complexity of refinery operations.						
V						

Course code	SPT3507
Course title	Special Subject VII- Catalysis in Petroleum Industry
Scheme and	2 L: 1 T: 0 P 3 Credits
Credits	
Pre-requisites	Chemical Reaction Engineering, Chemical Technology.

Objectives of t	he	This course covers the scope of catalyst in petroleum refining a	and
course		petrochemical sector	
Course title		Detailed contents	Total
			contact
			h
	1	Introduction to catalytic processes in petroleum industry,	
		types of catalyst, reaction mechanism of catalyst, catalyst	4
		testing, performance and regeneration, Catalysts promoters,	
		Inhibitors, catalyst deactivations	
	2	Zeolite synthesis reactions, unit cell structure, classification,	
		acidity, and basicity in Zeolites, cation exchange	
		dealumination and isomorphus substitution principles,	8
		Applications of Zeolites in catalysis and in separation	
		processes- a few case studies	
Special Subject	3	Reforming Catalyst, Nobel metal catalyst, types, promoters,	6
1		Inhibitors, catalyst deactivations	0
	4	Alkylation and isomerization catalyst, advancement in design	4
		from homogeneous to heterogeneous	
	5	Catalysis for hydrotreatments, manufacturer, selectivity,	4
		promoters	•
	6	Vanadium based catalyst, polymerization catalyst, Ziegler	6
		Natta catalyst for petrochemicals	
	7	New development in solia catalysis, monolith catalysts, Nano	4
		catalysts, Insitu characterization. simulation techniques	
		Total	36
Suggested		24. Modern Petroleum Technology : G D Hobson and W Pohl 25. The Chemistry and Technology of Petroleum : J. G Speight	
text/referenc		26. Petroleum Refining Processs: J. G. Speight and B. Ozum	
e books	C+··	dents will be able to	
Outcomes	Stu		
		Understand the importance of catalysis petroleum industry	
		<ul> <li>Analyse and understand the design of catalysis and its role</li> </ul>	in various
		processes	
		<ul> <li>Understand the complexity of efficient catalyst development</li> </ul>	

## Petroleum Product Testing Lab-1

- 1. Determination of flash point of petroleum sample (Able's and Pensky Martin Apparatus)
- 2. Determination of flash and fire point of petroleum sample (Cleveland Open cup apparatus)
- 3. Determination of API Gravity of petroleum fractions
- 4. Determination of Aniline point of a given sample
- 5. Determination of Cloud and Pour point of a given sample
- 6. Determination of Raid Vapor pressure of petroleum sample
- 7. Determination of ASTM distillation curve for the given petroleum sample

## Petroleum Product Testing Lab-2

- 8. Determination of viscosity and viscosity index of a given petroleum sample using Redwood viscometer
- 9. Determination of carbon residue of a petroleum fraction using Codradson carbon residue apparatus
- 10. Determination of copper strip corrosion of a given sample
- 11. Determination of calorific value of a liquid fuel sample using bomb calorimeter
- 12. Determination of smoke point of a petroleum sample
- 13. Determination of water contamination in lube oil using Dean and Stark Apparatus
- 14. Determination of moisture content in a petroleum sample using Karl-Fisher apparatus

## Materials and Polymers

SP #	Course Code (IOCB)	Course Code (MARJ)	Туре	List of Subjects
1	SMT32 01	SMT420 1	Theory	Introduction to Material Technology
2	SMT33 02	SMT430 2	Theory	Polymer science and Technology-I
3	SMT34 03	SMT440 3	Theory	Structure-Property Relationships
4	SMT34 04	SMT440 4	Theory	Polymer science and technology -II
5	SMT34 05	SMT440 5	Theory	Materials processing
6	SMT35 06	SMT450 6	Theory	Nanomaterials
7	SMT35 07	SMT450 7	Theory	Functional materials
1	SMP33 03	SMP430 3	Laborator y	Materials Characterization Laboratory
2	SMP34 02	SMP440 2	Laborator y	Materials processing and characterization laboratory

		1/1	Co	Contact H		
		6	L	Т	Р	Tot
Course code		SMT4201				
Course title		Introduction to Materials Technology				
Scheme and Credits		2L: 1T: 0P 3 Credits				
Pre- requisite s		Physics I & II, Chemistry I & II.				
Objectiv es of the course	1	Understand the basic principles of material science and engineering.				
	2	Apply various testing methods assessing mechanical, thermal and rheological properties of polymers.				
	3	Analyze the properties and applications of the materials.				
	4	Create basic platform for students to develop newer materials used in industry applications				
Detailed contents	.0	Ŷ.				
	10,	Introduction to Materials: Thermoplastics, Thermosets, Elastomers, cellulose Polymer and Metal Composites., Smart and advanced materials	2	1		3
	2	Mechanical and Electrical Properties of Materials: stress-strain behavior, Tensile, Flexural and Impact properties, true stress and true strain, brittle and ductile materials, stress-strain curve of single crystal, hardness, creep, fatigue, mechanism to improve the mechanical properties and fracture properties. Electrical properties, conductivity, dielectric properties, Impedance technique	4	2		6
· · ·	3	Thermal Properties of Materials: Glass transition	4	2		6

l I			temperature (Tg), Melting temperature (Tm),			
			Crystallization temperature (Tc), Heat distortion			
			temperature (HDT) etc. Sample preparation,			
			standardization, conditioning of sample,			
			processability test, dynamic mechanical analysis,			
			melt flow rate, Vicat softening temperature. Study			
			of a dilatometer. Study of thermo-chemical analysis			
	_		and differential scanning calorimeter.	-	_	
	4		Surface Properties of Materials: Importance of	4	2	6
			surfaces and wear surface properties in			
			engineering applications, X-ray diffraction			
			spectrometry, scanning electron microscopy,			
			travelling electron microscope, contact angle,			
			surface energy, adhesion properties.			
	5		Optical Properties of Materials: fundamentals of	4	2	6
	_		atomic theory of optical materials, quantum theory	_		_
			of optical materials, excitons and colour centers,			
			classifications of optical materials, scattering,			
			refraction theory of refraction and absorption			
			refraction, theory of refraction and absorption,			
			reflection and transmission, introduction to			
			Refractive Index, optical Density,.	_	_	
	6		Composite and Nanomaterial: Introduction,	6	3	9
			classification of the composite materials, particle			
			reinforced composites, fiber reinforced composites,			
			processing techniques for composite materials and			
			applications. Synthesis of nanostructured			
			materials, top-down approach-nanomaterials-			
			synthesis, bottom-up process-synthesis of			
			nanoparticles, vapor phase deposition, epitaxial			
			techniques-synthesis of nanomaterials, chemical			
			methods-nanomaterial synthesis, hybrid methods-			
			synthesis of nanomaterials, nanotechnology and			
			environment, properties and possible applications			
			and storage.			
į l						
			Total	2	1	36
			Total	2	1 2	36
Suggest			Total	_	_	36
Suggest ed			Total	_	_	36
ed			Total	_	_	36
		1	.\c	_	_	36
ed		1	Plastics Materials by J.A. Brydson,	_	_	36
ed		1 2	Plastics Materials by J.A. Brydson, Handbook of Industrial Chemistry: Organic	_	_	36
ed		2	Plastics Materials by J.A. Brydson, Handbook of Industrial Chemistry: Organic Chemicals by Mohammad Farhat Ali,	_	_	36
ed		3	Plastics Materials by J.A. Brydson, Handbook of Industrial Chemistry: Organic Chemica's by Mohammad Farhat Ali, Materials Science by V Rajendran,	_	_	36
ed		2	Plastics Materials by J.A. Brydson, Handbook of Industrial Chemistry: Organic Chemica's by Mohammad Farhat Ali, Materials Science by V Rajendran, Introduction to Material Science for Engineers by J F	_	_	36
ed		3	Plastics Materials by J.A. Brydson, Handbook of Industrial Chemistry: Organic Chemica's by Mohammad Farhat Ali, Materials Science by V Rajendran, Introduction to Material Science for Engineers by J F Shackelford.	_	_	36
ed		3	Plastics Materials by J.A. Brydson, Handbook of Industrial Chemistry: Organic Chemica's by Mohammad Farhat Ali, Materials Science by V Rajendran, Introduction to Material Science for Engineers by J F Shackelford.	_	_	36
ed		3 4	Plastics Materials by J.A. Brydson, Handbook of Industrial Chemistry: Organic Chemicals by Mohammad Farhat Ali, Materials Science by V Rajendran, Introduction to Material Science for Engineers by J F Shackelford. Materials Science and Engineering: An Introduction	_	_	36
ed		3 4 5	Plastics Materials by J.A. Brydson, Handbook of Industrial Chemistry: Organic Chemicals by Mohammad Farhat Ali, Materials Science by V Rajendran, Introduction to Material Science for Engineers by J F Shackelford. Materials Science and Engineering: An Introduction by William D Callister.	_	_	36
ed		3 4	Plastics Materials by J.A. Brydson, Handbook of Industrial Chemistry: Organic Chemicals by Mohammad Farhat Ali, Materials Science by V Rajendran, Introduction to Material Science for Engineers by J F Shackelford. Materials Science and Engineering: An Introduction by William D Callister. SPI Plastics Engineering Handbook of the Society of	_	_	36
ed		2 3 4 5	Plastics Materials by J.A. Brydson, Handbook of Industrial Chemistry: Organic Chemicals by Mohammad Farhat Ali, Materials Science by V Rajendran, Introduction to Material Science for Engineers by J F Shackelford. Materials Science and Engineering: An Introduction by William D Callister. SPI Plastics Engineering Handbook of the Society of the Plastics Industry, Inc. by Berins, Michael L.	_	_	36
ed		3 4 5	Plastics Materials by J.A. Brydson, Handbook of Industrial Chemistry: Organic Chemicals by Mohammad Farhat Ali, Materials Science by V Rajendran, Introduction to Material Science for Engineers by J F Shackelford. Materials Science and Engineering: An Introduction by William D Callister. SPI Plastics Engineering Handbook of the Society of the Plastics Industry, Inc. by Berins, Michael L. Plandbook of Plastics Analysis, H. Lobo and J. V.	_	_	36
ed		2 3 4 5 6	Plastics Materials by J.A. Brydson, Handbook of Industrial Chemistry: Organic Chemicals by Mohammad Farhat Ali, Materials Science by V Rajendran, Introduction to Material Science for Engineers by J F Shackelford. Materials Science and Engineering: An Introduction by William D Callister. SPI Plastics Engineering Handbook of the Society of the Plastics Industry, Inc. by Berins, Michael L. Plandbook of Plastics Analysis, H. Lobo and J. V. Bonilla, Marcel Dekker.	_	_	36
ed		2 3 4 5	Plastics Materials by J.A. Brydson, Handbook of Industrial Chemistry: Organic Chemicals by Mohammad Farhat Ali, Materials Science by V Rajendran, Introduction to Material Science for Engineers by J F Shackelford. Materials Science and Engineering: An Introduction by William D Callister. SPI Plastics Engineering Handbook of the Society of the Plastics Industry, Inc. by Berins, Michael L. Plandbook of Plastics Analysis, H. Lobo and J. V. Bonilla, Marcel Dekker. Handbook of polymer Testing Roger Brown, Marcel	_	_	36
ed		2 3 4 5 6 7	Plastics Materials by J.A. Brydson, Handbook of Industrial Chemistry: Organic Chemicals by Mohammad Farhat Ali, Materials Science by V Rajendran, Introduction to Material Science for Engineers by J F Shackelford. Materials Science and Engineering: An Introduction by William D Callister. SPI Plastics Engineering Handbook of the Society of the Plastics Industry, Inc. by Berins, Michael L. Handbook of Plastics Analysis, H. Lobo and J. V. Bonilla, Marcel Dekker. Handbook of polymer Testing Roger Brown, Marcel Dekker Inc.	_	_	36
ed		2 3 4 5 6 7 8	Plastics Materials by J.A. Brydson, Handbook of Industrial Chemistry: Organic Chemicals by Mohammad Farhat Ali, Materials Science by V Rajendran, Introduction to Material Science for Engineers by J F Shackelford. Materials Science and Engineering: An Introduction by William D Callister. SPI Plastics Engineering Handbook of the Society of the Plastics Industry, Inc. by Berins, Michael L. Handbook of Plastics Analysis, H. Lobo and J. V. Bonilla, Marcel Dekker. Handbook of polymer Testing Roger Brown, Marcel Dekker Inc. Instrumental Methods by Dyer.	_	_	36
ed		2 3 4 5 6 7	Plastics Materials by J.A. Brydson, Handbook of Industrial Chemistry: Organic Chemical's by Mohammad Farhat Ali, Materials Science by V Rajendran, Introduction to Material Science for Engineers by J F Shackelford. Materials Science and Engineering: An Introduction by William D Callister. SPI Plastics Engineering Handbook of the Society of the Plastics Industry, Inc. by Berins, Michael L. Handbook of Plastics Analysis, H. Lobo and J. V. Bonilla, Marcel Dekker. Handbook of polymer Testing Roger Brown, Marcel Dekker Inc. Instrumental Methods by Dyer. Developments in Polymer Characterization by J. V	_	_	36
ed		2 3 4 5 6 7 8	Plastics Materials by J.A. Brydson, Handbook of Industrial Chemistry: Organic Chemicals by Mohammad Farhat Ali, Materials Science by V Rajendran, Introduction to Material Science for Engineers by J F Shackelford. Materials Science and Engineering: An Introduction by William D Callister. SPI Plastics Engineering Handbook of the Society of the Plastics Industry, Inc. by Berins, Michael L. Handbook of Plastics Analysis, H. Lobo and J. V. Bonilla, Marcel Dekker. Handbook of polymer Testing Roger Brown, Marcel Dekker Inc. Instrumental Methods by Dyer.	_	_	36
ed		2 3 4 5 6 7 8 9	Plastics Materials by J.A. Brydson, Handbook of Industrial Chemistry: Organic Chemicals by Mohammad Farhat Ali, Materials Science by V Rajendran, Introduction to Material Science for Engineers by J F Shackelford. Materials Science and Engineering: An Introduction by William D Callister. SPI Plastics Engineering Handbook of the Society of the Plastics Industry, Inc. by Berins, Michael L. Handbook of Plastics Analysis, H. Lobo and J. V. Bonilla, Marcel Dekker. Handbook of polymer Testing Roger Brown, Marcel Dekker Inc. Instrumental Methods by Dyer. Developments in Polymer Characterization by J. V Dawkins.	_	_	36
ed		2 3 4 5 6 7 8 9 10	Plastics Materials by J.A. Brydson, Handbook of Industrial Chemistry: Organic Chemicals by Mohammad Farhat Ali, Materials Science by V Rajendran, Introduction to Material Science for Engineers by J F Shackelford. Materials Science and Engineering: An Introduction by William D Callister. SPI Plastics Engineering Handbook of the Society of the Plastics Industry, Inc. by Berins, Michael L. Handbook of Plastics Analysis, H. Lobo and J. V. Bonilla, Marcel Dekker. Handbook of polymer Testing Roger Brown, Marcel Dekker Inc. Instrumental Methods by Dyer. Developments in Polymer Characterization by J. V Dawkins. Engineering Material by R K Rajput	_	_	36
ed		2 3 4 5 6 7 8 9 10	Plastics Materials by J.A. Brydson, Handbook of Industrial Chemistry: Organic Chemicals by Mohammad Farhat Ali, Materials Science by V Rajendran, Introduction to Material Science for Engineers by J F Shackelford. Materials Science and Engineering: An Introduction by William D Callister. SPI Plastics Engineering Handbook of the Society of the Plastics Industry, Inc. by Berins, Michael L. Plandbook of Plastics Analysis, H. Lobo and J. V. Bonilla, Marcel Dekker. Handbook of polymer Testing Roger Brown, Marcel Dekker Inc. Instrumental Methods by Dyer. Developments in Polymer Characterization by J. V Dawkins. Engineering Material by R K Rajput Materials Science by R.S. Khurmi, R.S. Sedha,	_	_	36
ed books.		2 3 4 5 6 7 8 9 10	Plastics Materials by J.A. Brydson, Handbook of Industrial Chemistry: Organic Chemicals by Mohammad Farhat Ali, Materials Science by V Rajendran, Introduction to Material Science for Engineers by J F Shackelford. Materials Science and Engineering: An Introduction by William D Callister. SPI Plastics Engineering Handbook of the Society of the Plastics Industry, Inc. by Berins, Michael L. Handbook of Plastics Analysis, H. Lobo and J. V. Bonilla, Marcel Dekker. Handbook of polymer Testing Roger Brown, Marcel Dekker Inc. Instrumental Methods by Dyer. Developments in Polymer Characterization by J. V Dawkins. Engineering Material by R K Rajput Materials Science by R.S. Khurmi, R.S. Sedha, Materials Science by M S Vijaya and G Rangarajan	_	_	36
ed books.	P	2 3 4 5 6 7 8 9 10	Plastics Materials by J.A. Brydson, Handbook of Industrial Chemistry: Organic Chemicals by Mohammad Farhat Ali, Materials Science by V Rajendran, Introduction to Material Science for Engineers by J F Shackelford. Materials Science and Engineering: An Introduction by William D Callister. SPI Plastics Engineering Handbook of the Society of the Plastics Industry, Inc. by Berins, Michael L. Plandbook of Plastics Analysis, H. Lobo and J. V. Bonilla, Marcel Dekker. Handbook of polymer Testing Roger Brown, Marcel Dekker Inc. Instrumental Methods by Dyer. Developments in Polymer Characterization by J. V Dawkins. Engineering Material by R K Rajput Materials Science by R.S. Khurmi, R.S. Sedha,	_	_	36
ed books.		2 3 4 5 6 7 8 9 10	Plastics Materials by J.A. Brydson, Handbook of Industrial Chemistry: Organic Chemicals by Mohammad Farhat Ali, Materials Science by V Rajendran, Introduction to Material Science for Engineers by J F Shackelford. Materials Science and Engineering: An Introduction by William D Callister. SPI Plastics Engineering Handbook of the Society of the Plastics Industry, Inc. by Berins, Michael L. I'andbook of Plastics Analysis, H. Lobo and J. V. Bonilla, Marcel Dekker. Handbook of polymer Testing Roger Brown, Marcel Dekker Inc. Instrumental Methods by Dyer. Developments in Polymer Characterization by J. V Dawkins. Engineering Material by R K Rajput Materials Science by R.S. Khurmi, R.S. Sedha, Materials Science by M S Vijaya and G Rangarajan Student will	_	_	36
ed books.	co	2 3 4 5 6 7 8 9 10	Plastics Materials by J.A. Brydson, Handbook of Industrial Chemistry: Organic Chemicals by Mohammad Farhat Ali, Materials Science by V Rajendran, Introduction to Material Science for Engineers by J F Shackelford. Materials Science and Engineering: An Introduction by William D Callister. SPI Plastics Engineering Handbook of the Society of the Plastics Industry, Inc. by Berins, Michael L. H'andbook of Plastics Analysis, H. Lobo and J. V. Bonilla, Marcel Dekker. Handbook of polymer Testing Roger Brown, Marcel Dekker Inc. Instrumental Methods by Dyer. Developments in Polymer Characterization by J. V Dawkins. Engineering Material by R K Rajput Materials Science by R.S. Khurmi, R.S. Sedha, Materials Science by M S Vijaya and G Rangarajan Student will Understand the various engineering materials	_	_	36
ed books.	CO 1 CO	2 3 4 5 6 7 8 9 10	Plastics Materials by J.A. Brydson, Handbook of Industrial Chemistry: Organic Chemicals by Mohammad Farhat Ali, Materials Science by V Rajendran, Introduction to Material Science for Engineers by J F Shackelford. Materials Science and Engineering: An Introduction by William D Callister. SPI Plastics Engineering Handbook of the Society of the Plastics Industry, Inc. by Berins, Michael L. I'andbook of Plastics Analysis, H. Lobo and J. V. Bonilla, Marcel Dekker. Handbook of polymer Testing Roger Brown, Marcel Dekker Inc. Instrumental Methods by Dyer. Developments in Polymer Characterization by J. V Dawkins. Engineering Material by R K Rajput Materials Science by R.S. Khurmi, R.S. Sedha, Materials Science by M S Vijaya and G Rangarajan Student will	_	_	36

	2	mechanism.				
	со	Understand the significance of material science in				
	3	domestic and engineering applications.				
			Co	ntac		
Course	-	SMT4302	L	Т	Р	Tot
code		3M14302				
Course		Polymer science and Technology-I				
title		· · · · · · · · · · · · · · · · · · ·				
Scheme		2L: 1T: 0P 3 Credits				
and		$O_{\star}$				
Credits Pre-		Chemistry I, II & III, Physics I & II, Material physics.				
requisite		Chemistry I, II & III, Physics I & II, Material physics.				
s		0				
Objectiv		To enable the students to understand the basic				
es of the		concept of polymer, its classification, mechanism of				
course		formation and various techniques of				
		polymerization.				
Detailed		\varphi				
contents		δ'				
	1	Historical developments in polymeric materials,	2	1		3
		Basic concepts & definitions : monomer &				
		functionality, oligomer, polymer, repeating units,				
		degree of polymerization, molecular weight &				
	2	molecular weight distribution.  Natural polymers, Chemical & Physical structure,	4	2		6
		properties, source, important chemical	4			0
		modifications, applications of polymers such as				
		cellulose, lignin, starch, rosin, shellac, latexes,				
		vegetable oils and gums, proteins etc.				
	3	Classification of polymers thermoplastic/	4	2		6
		thermoset, addition/ condensation, natural /synthetic, crystalline/amorphous, step growth				
		/synthetic, crystalline/amorphous, step growth /chain growth ,commodity/specialty, homochain/				
		heterochain, confirmation: homo & copolymers,				
		configuration cis/trans; tacticity, branched/				
		crosslinked, Classification of polymers based on				
		end use etc.				
	4	Techniques of polymerization: bulk, solution,	6	3		9
		suspension, emulsion, plasma etc. Different initiating systems such as free radicle				
		polymerization, redox, cationic & anionic				
		polymerization ( different terms such as living				
		polymers, inifers, telechelics ). Their kinetics &				
		control over structure of polymer.		_		
	5	Condensation polymerization, different catalysts used, case studies of condensation polymerization,	4	2		6
		carothers equation, Comparison of these systems				
		with advantages & disadvantages.				
		Copolymerization, reactivity ratios & kinitics of				
		copolymerization (copolymer composition				
		equation).	4			
	6	Evaluation and testing of polymers: molecular weight determination, thermal properties, viscosity	4	2		6
	1	of polymers and polymer solutions, electrical				
	7	properties, mechanical properties, optical				
	P.X	properties.				
	K	Total	2	1		36
Suggest			4	2		
ed						
books.						

			Encyclopedia of Polymer Science and Technology, John Wiley and Sons, Inc 1965.				
		3	Polymer Chemistry by Malcolm P. Stevens, Oxford University Press, Inc, 1990.				
		4	Introduction to Polymer Science and Technology, H.				
			S. Kaufman and J. J. Falcetta, Wiley - Interscience				
		_	Publication, 1977				
_		5	Handbook of polymer Testing Roger Brown, Marcel Dekker Inc, 1999.				
Outcome s			Students will				
	CO 1		develop the knowledge of concept of polymers, their classifications and nomenclature.				
	co		be able to asses the kinetics and mechanism of				
	2		free radical cationic and anionic polymerization.				
	co		be able to evaluate the mechanism and kinetics of				
	CO		copolymer free radical synthesis technique. understand the techniques used for determination				
	4		of various polymer properties like molecular weight, viscosity.				
			Weight, Viscosityi	Co	ntac	t Ho	ours
			, 0	L	T	Р	Tot
Course code			SMT4403				
Course title			Structure-Property Relationships				
Scheme			2L: 1T: 0P 3 Credits				
and Credits			, C,				
Pre-			Physics I & II, Material physics, Polymer science and				
requisite s			technology I.				
			(V				
Objectiv			To give students the comprehensive exposure of				
es of the			crystal structure, defects and their effect on material properties for engineering materials.				
course			material properties for engineering materials.				
Detailed							
contents							
	1		Basic crystallography and crystal structures, Bonding in materials and atomic packing in metals, co-ordination number concepts, Covalent bonding, glasses and polymers, Crystal defects and their significance	2	1		3
	2		Phase diagrams, Solid solutions, Hume Rothery	4	2		6
			rules, Intermediate phases and compounds, Various phase reactions, Introduction to different phase diagrams, Lever rule, Cooling curve and its use for				
	3	0	drawing phase diagrams. Thermal Properties: Lattice vibrations, Heat	6	3		9
	(	SOLOK	capacity, Thermal expansion, Thermal conductivity thermal stress in materials. Optical Behavior: Interaction of radiation with matter (metals and non-metals), Phosphorescence, luminescence and optical active materials, Structure property relationship in anisotropic media.	•	,		J
	4 🏿	,	General structural features of polymers: Effects of atoms types of bonds, bond dissociation energy	2	1		3
	,		and functional around an amanautice of religions				
	5		and functional groups on properties of polymers  Configuration & conformation and structure	4	2		6

			solutions, thermodynamics of dissolution, Florry-						
	6		Huggins theory.  Polymer chain flexibility: concept of flexibility,	4	2		6		
	0		various factors deciding flexibility of polymers,	4			6		
			properties affected by flexibility. Intermolecular						
			orders: Amorphous, crystalline and oriented forms						
	7		of polymers, crystallinity of polymers.	2	-				
	7		Thermal properties of polymers, Degradation and	2	1 3				
		-	stabilization of polymers.  Total	2	2 1 0 3				
			iotai	4	2	"	36		
- Cuanast			O _A	4					
Suggest ed			^~						
books.			· V						
DUUKS.		1	Crystals and Crystal structures, R.J.D. Tilley, John						
		1							
		2	Wiley and Sons, 2006.						
		2	Callister, W.D., Materials Science & Engineering: An						
		2	Introduction, Wiley & Sons, (2001)						
		3	Fundamentals of Materials Science-the						
			microstructure-property relationship using metals as model systems, E.J. Mittemeijer, Springer, 2010						
		4	Polymer Structure, Properties and application, R.D.						
		4							
		5	Deanin, American Chemical Society, 1974						
		3	Relating Materials Properties to structure, D. J. David, Technical Publishing Company Inc, 1999.						
		6							
		0							
			Properties, Teraoka, Iwao, John Wiley and Sons. Inc, 2002.						
Outcomo			Students will						
Outcome			Students will						
S	СО	-	understand the importance of structure-property						
	1		correlation study of materials and its suitable						
			applications.						
	СО		achieve ability to differentiate between different						
	2		type of materials, and their structures.						
	CO		able to explain the structural dependence of						
	3		properties of materials.						
	, <u> </u>	1	properties of materials.			<u> </u>			
			100		ntac	_			
			CATAGO	L	Т	Р	Tot		
Course			SMT4404						
code									
Course			Polymer Science and technology -II						
title			21. 17 OD 2 Care 111.						
Scheme			2L: 1T: 0P 3 Credits						
and			2						
Credits			Chamietra I II C III Dhamina I C II Matarial mharita						
Pre-			Chemistry I, II & III, Physics I & II, Material physics,						
requisite			Polymer science and technology -I						
s Objectiv			To enable students to learn about the general						
es of the			methods of preparation of individual class of						
course			plastics materials, their general properties,						
Course		9,	processing behavior and applications.						
		4	processing behavior and applications.						
Detailed		.0							
contents		2							
CONTENTS	1	0	Engineering Polymers Polyesters such as PET, PBT,	2	1		3		
	- A	0,	PTT, Polycarbonates, Polyacetal etc. Polyethylenes;		_		3		
	27	X	modified polyethylenes, Polypropylene and						
	У		copolymer of PP, modified Polyolefins.						
	2	-	Thermoplastics: Styrenic polymers - Polystyrene,	6	3		9		
	2		HIPS, SAN, ABS, Polymamides- Nylon 6, Nylon 6,6,	0	3		9		
			Nylon 11, Acrylic polymers & copolymers, Polyvinyl						
			chloride & its copolymers, Poly vinyl acetate,						
	l	1	chionae & its copolymers, roly villyl acetate,						

			Modified cellulosics.				
	3		Thermoset resins: Polyster resins, phenolic, Amino resins, Epoxy resins, Polyeurethanes, Alkyd resins, Thermosetting acrylics, Silicones thermoplastics and thermosets.	8	4		12
	4		Elastomers: Definition of elastomers, classifications of elatomers, Vulcanization, Synthesis of various rubbers natural rubber/ synthetic polyisoprene, Synthesis of various rubbers.	4	2		6
	5 Additives for polymers: Pigments, Plasticizers, Lubricants, Processing aids & various rheology modifiers, UV stabilizers, Impact modifiers, Flame retardants, nucleating agents, blowing agents, Cross linking agents and miscellaneous additives						6
			Total	2	1 2		36
Suggest ed books.			74,				
		1	Polymer Science by Gowarikar, Johan wiley and Sons 1986.				
		2	Encyclopedia of Polymer Science and Technology, John Wiley and Sons, Inc 1965.				
		3	Polymer Chemistry by Malcolm P. Stevens, Oxford University Press, Inc, 1930.				
		4	Introduction to Polymer Science and Technology, H. S. Kaufman and J. J. Falcetta, Wiley - Interscience Publication, 1977				
		5	Plastics Additive Handbook, Gachter and Mullar, Hanser Publishers, 1987.				
Outcome s			Students will				
	CO 1		acquire skills in selecting additives for plastic materials for specific applications				
	CO 2		have knowledge of manufacturing, properties and applications of resins, elastomers and theroplastics.				
	CO 3		have knowledge of manufacturing, properties and applications of special purpose plastics				
			N.				

		Co	ntac	t Ho	ours
	. 0)	L	Т	Р	Tot
Course code	SMT4405				
Course title	Material Processing				
Scheme and Credits	2L: 1T: 0P 3 Credits				
Pre- requisite s	Material physics, Polymer science and technology I, Structural property relationship, Material science and engineering.				
Objectiv es of the course	To acquaint students with fundamental knowledge of material and polymer processing techniques which will be helpful in practical implementation of processing.				
Detailed contents	8				
	Introduction to material processing, macro, micro and nanostructures, Micro-structural evolution, Introduction to solidification, Stefan condition, Solidification in a thick mold.	2	1		3
	2 Interface resistance-limited solidification, Single crystal production, Introduction to binary	4	2		6

title Scheme			2L: 1T: 0P 3 Credits				
Course			Nanomaterials				
code	,		3M14300				
Course	P	47	SMT4506	L	Т_	Р	Tot
		Ď,		Со			ours
	3	Q	gradient materials for desired application				
	СО	25	able to design and develop the functionally				
	2	.0	with the different processing of materials.				
	CO	7	understand the basics of Microstructural aspects				
	CO   1	.0	understand the different materials processing techniques.				
S		$\vdash$	lundovatored the different materials must recipie				
Outcome			Student will				
			Hanser Publishers, 1998.				
		6	Johan Wiley and Sons, Inc 1988.  Polymer Processing Fundamentals, Osswald, A. Tim,				
		5	Encyclopedia of Polymer Science and Engineering,				
			Midd'eman, Houghton Mifflin Compony, 1997.				
		4	Fundamentals of Polymer Processing, S.				
		3	Chester 1. Sims, Williams C. Hagel: The Super Alloys, John Wiley & Sons, 1992.				
		2	Materials Science and Engineering, Raghavan V. Chester 7. Sims, Williams C. Hagel: The Super				
			manufacturing - John Willey and sons, 2019				
יכעמטי		1	J. T. Black - Degormos Materials and process in				
ed books.			. (1				
Suggest			0				
			,0	4	2		
			Total	2	1		36
			and other polymeric fillers.				
			as DMC, SMC, FRF etc. using fillers reinforcement				
	8		Fillers and reinforcement, Polymer composites such	2	1		3
			assisted injection molding and other three dimensional molding.				
			molding, Resin transfer molding, Gas and water				
	_		Compression molding, Injection stretch blow	_	_		
	7		Polymer Molding, Injection molding Blow molding,	4	2		6
			Extrusion of cable material, extrusion of sheet, Calendaring, Thermoforming.				
			Extrusion of profiles, coextrusion of pipes,				
			multilayred films, Fiber spinning, Pipe extrusion,				
	6		Polymer processing: Extruders single screw and twin screw extruders, Film blowing, coextrusion of	4	2		6
			colloid processing.		_		
			powder processing, Sintering, slurry processing,				
			Soldering, brazing and braze welding, Joint through Adhesive. Sheet metal working, Introduction to				
			welding. Resistance welding, Gas welding,				
	5		Joining processes, Welding, Arc welding, Stud	4	2		6
			lubrication in metal forming, Rolling, Forging, extrusion.				
			metal forming, strain rate sensitivity, fliction and				
	4		Metal Forming Processes, Material behavior in	2	1		3
			sand- types, properties and testing, Molding - types, equipment's, tools and machines.				
	3		Sand casting, lost foam & cooled molds, Molding	2	1		3
			Engineering binary alloy microstructures.				
			solidification, Plane front poly phase alloy solidification, nucleation and growth kinetics,				
			diffusion in liquid, Plane front single phase				
			solidification, Zone refining, Solidification with finite				

	1					
and Credits						
Pre- requisite			Physics I & II, Material physics, Material science and engineering, Structure property relationship.			
S						
Objectiv es of the course			To give students the comprehensive exposure of nanomaterials, their properties, synthesis methods, charecterization techniques and applications			
Detailed contents			₽,			
	1		Introduction to nanomaterials, forces at nanoscale, scaling laws, surface effects and physical properties of nanomaterials, electrical, magnetics and optical properties of nanomaterials.	4	2	6
	2		Overview of nanstructures and nanomaterials, Atomic bonding, Multiscale hierarchy, self assembly, Isotropic and anisotropic nanoparticles, one, two and three-dimensional nanomaterials, quantum dots, nano rods, nanowires, core shell nanoparticles etc.	4	2	6
	3		Synthesis techniques of nanomaterials: Top-down synthesis method (ball milling, nanolithography), Bottom-up synthesis method (sol-gel, soft chemistry, self assembly, inkjet printing, scanning probe techniques), Nucleation, growth and agglomeration of nanoparticles.	4	2	6
	4		Carbon based materials, Silicon nanomaterials, Metal nanomaterials, Metal oxide nanomaterials, Nanocomposites, Biological nanomaterials, Nanomachines and Nanodevices (FETs, MOSFETs, Logic Devices, nanosensors, imaging and display devices), Nanomaterials in energy, Safety issues in nanomaterials	4	2	6
	5		Applications of nanomaterials: Ferroelectric materials coating, molecular electronics, nanoelectronics, biological and environmental, membrane based, nano optics, biomedical applications, drug delivery system, photovoltaic, fuel cell, batteries, nano sensors and devices.	4	2	6
	6		Charecterization of nanomaterials: Scanning electron microscope (SEM), atomic force microscopy (AFM), FESEM, TEM, STM, SPM, diffraction and scattering techniques, vibrational spectroscopy, x-ray diffraction (powder diffraction method), Three Dimensional atom probe (3DAP), particle size measurement techniques like DLS, DCS etc.	4	2	6
			Total	2	1 2	36
Suggest ed			<b>)</b>	•		
books.		.0	Ī			
		0	Chemistry of Nanomaterials: synthesis, properties and applications- CNR Rao, Achim Müller, A. K. Cheetham, Wiley VCH 2004			
		02	Nanotechnology, By Lynn E. Foster, Pearson 2011			
	0	3	The physics and chemistry of nanomaterials- Frank J. Owens and Charles P. Poole Jr. Wiley interscience 2008.			
	*	4	Introductory Nanoscience, by Masuro Kuno, Garland Science 2011			
		5	Fundamentals and Applications of Nanomaterials, by Z. Guo and Li Tan			
		6	Hand Book of Nanoscience and Engineering and			

and G. J. Infrate., CRC press 2002.							
Students will  CO			Technology- W. Gaddand D. Brenner, S. Lyshers Ki				
CO Understand the basics of nanomaterials and nanotechnology.  Able to suggest charecterization technique for the nanomaterials and identify the applications of nanomaterials and nanotechnology in various fields.  Course code  Course Functional materials  City Structure Property relationship, Nanomaterials.  Pre- Physics I & II, Material physics, Material science and engineering, Structure property relationship, Nanomaterials.  Dijectiv es of the course applications.  Detailed contents  1 Introduction to functional materials: Definition of functional materials used in domestic and industry applications.  Detailed contents  1 Introduction to functional materials: Definition of functional materials. Physics in particular and property of biomaterials, Degradation of biomaterials and property of biomaterials, Degradation of biomaterials, Polymeric biomaterials introduction, preparation, Ilydrogel biomaterials, Biocompatibility, Biomaterials implantation, Evaluation of biomaterials, Nanobiomaterials, Biomaterials interaction, Biomaterials implantation, Evaluation of biomaterials and diagnosis, Cell-Biomaterials interaction, Biomaterials and diagnosis, Cell-Biomaterials interaction, Biomaterials and their applications, DC, low frequency, RF, microwave and recording applications of magnetic oxides and alloys, LMR Materials, Magneto caloric materials and sing iglasses, Super paramagnetism, Ferrofluid Magneto electronics.  Recent developments in the applications of Magnetic Materials, Functionalised magnetic aroparticles.  4 Conducting Polymer Sensors, Actuators and Field-frect Transistors: Introduction, Synthesis of Conducting Polymer FETS.  5 Ferroelectric crystals and applications, Relaxor Materials, Spintronic: Spin polarization and application, Materials for optoelectronic devices: solar cells & OLED's Energy materials; Polymer electrolytes, Solar energy materials; Polymer electrolytes, Solar energy materials; Polymer electrolytes, Solar energy materials; Polymer electrolytes, Solar energy materials; Polymer electr							
CO   Understand the basics of nanomaterials and nanotechnology. able to suggest charecterization technique for the nanomaterials   CO   dientify the applications of nanomaterials and nanotechnology in various fields.   Contact Hour			Students will				
1 nanotechnology. 2 able to suggest charecterization technique for the nanomaterials identify the applications of nanomaterials and anotechnology in various fields.    Course	S						
CO able to suggest charecterization technique for the nanomaterials identify the applications of nanomaterials and nanotechnology in various fields.  Course Course Course Functional materials title 2L: 1T: OP 3 Credits and Credits Pre- Physics I & II, Material physics, Material science and engineering, Structure property relationship, Nanomaterials.  Objective so of the materials used in / domestic and industry applications.  Detailed contents  1 Introduction to functional materials: Definition of functional materials used in / domestic and industry applications.  Detailed contents  1 Introduction to functional materials: Definition of functional materials is limited in the property of biomaterials for biomaterials for biomaterials, Polymeric biomaterials, Bio conjugation of biomaterials, Polymeric biomaterials, Bio conjugation techniques, Biocompatibility, Biomaterials implantation, Evaluation of biomaterials in the property of biomaterials or imaging and diagnosis, Cell-Biomaterials interaction, Biomaterials interaction, Biomaterials and tissue engineering.  3 Soft & Hard magnetic materials and their applications, DC, low frequency, RF, microwave and recording applications of magnetic oxides and alloys; CMR Materials, Magneto caloric materials and spin glasses, Super paramagnetism, Ferrofluid Magneto electronics.  Recent developments in the applications of Magnetic Materials, Functionalised magnetic andoparticics and property of polymer sensors, Actuators and Field-Effect Transistors: Introduction, Synthesis of Conducting Polymer FETS.  5 Ferroelectric crystals and applications, Relaxor Materials, Spintronic: Spin polarization and applications, Materials for optoelectronic devices: solar cells & OLED's  Energy materials: Polymer electrolytes, Solar energy materials: phydrogen storage materials, electroceramics for batteries, fuel cells and electrocremics.							
CO identify the applications of nanomaterials and nanotechnology in various fields.  Contact House identify the applications of nanomaterials and nanotechnology in various fields.  Course code  Course title  Credits  Pre- Physics I & II, Material physics, Material science and engineering, Structure property relationship, Nanomaterials.  Objective es of the course in domestic and industry applications.  Detailed contents  1 Introduction to functional materials: Definition of functional materials used in domestic and industry applications.  Detailed contents  2 Biomaterials, Types of functional material.  2 Biomaterials; Introduction to biomaterials for biomedical applications, chemical structure and property of biomaterials. Degradation of biomaterials, Polymeric biomaterials, Bio conjugation techniques, Biocompatibility, Biomaterials in plantation, Evaluation of biomaterials, Bio conjugation techniques, Biomaterials interaction, Biomaterial and tissue engineering.  3 Soft & He'd magnetic materials and their applications, DC, low frequency, RF, microwave and recording applications of magnetic oxides and alloys; CIM Materials, Magneto caloric materials and fain glasses, Super paramagnetism, Ferrofluid Magneto electronics.  Recent developments in the applications of Magnetic darioparticles.  Conducting Polymer Sensors, Actuators and Field-Effect Transistors: Introduction, Synthesis of Conducting Polymer Sensors, Electrochemical Actuators, Conducting Polymer FETS.  5 Ferroelectric crystals and applications, Relaxor Materials, Spintronic: Spin polarization and application, Piezoelectrics for energy harvesting applications, Materials, Polymer electrolytes, Solar energy materials, hydrogen storage materials, electroceramics for batteries, fuel cells and							
CO identify the applications of nanomaterials and nanotechnology in various fields.  Course code  Course Course Functional materials Scheme and Credits  Pre- Physics I & II, Material physics, Material science and engineering, Structure property relationship, Nanomaterials.  Shanomaterials.  Objective so of the course  1 Introduction to functional materials: Definition of functional materials used in domestic and industry applications.  Detailed contents  1 Introduction to functional materials: Definition of functional materials. Introduction and property of biomaterials for biomaterials in plantation, preparation, lybrogel biomaterials, Bio conjugation techniques, Biocompatibility, Biomaterials implantation, Evaluation of biomaterials, Nanobiomaterials, Biomaterials for imaging and diagnosis. Cell-Biomaterials interaction, Biomaterials and their applications, DC, low frequency, RF, microwave and recording applications of magnetic oxides and alloys, CMR Materials, Magneto caloric materials and spin glasses, Super paramagnetism, Ferrofluid Magneto electronics.  Recent developments in the applications of Magneto electronics. Recent developments in the applications of Magneto electronics. Recent developments in the applications of Magneto electronics. Recent developments in the applications of Magneto electronics. Recent developments in the applications of Magneto electronics. Recent developments in the applications of Magneto electronics. Recent developments in the applications, Relaxor Materials, Spintronic: Spin polarization and application, Piezoelectrics for energy harvesting applications, Materials for optoelectronic devices: solar cells & OLED's  6 Energy materials; Polymer electrolytes, Solar energy materials, hydrogen storage materials, electrocermics for batteries, fuel cells and							
Course code Course title Scheme and credits Pre- Physics I & II, Material physics, Material science and engineering, Structure property relationship, Nanomaterials.  Detailed contents  1 Introduction to functional materials: Definition of functional materials, Types of functional materials and property of piomaterials, Degradation of biomaterials, Polymeric biomaterials. Bio conjugation techniques, implantation of biomaterials, Bio conjugation techniques, implantation of biomaterials, Biomaterials for biomaterials, Biomaterials for biomaterials, Biomaterials for biomaterials, Biomaterials for biomaterials, Biomaterials for biomaterials, Biomaterials for biomaterials, Biomaterials, Biomaterials introduction, preparation, livingel biomaterials, Bio conjugation techniques, Biomaterials for imaging and diagnosis, Cell-Biomaterials interaction, Biomaterial and tissue engineering.  3 Soft & Hed magnetic materials and their applications, Cell-Biomaterials interaction, Biomaterials and sin glasses, Super paramagnetism, Ferrofluid Mayneto electronics.  Recent developments in the applications of Magnetic decironics.  Recent developments in the applications of Magnetic darioparticles.  4 Conducting Polymer, Sensors, Actuators and Field-Effect Transistors: Introduction, Synthesis of Conducting Polymer, Conducting Polymer Gas Sensors, Electrochemical Actuators, Conducting Polymer FETS.  5 Ferroelectric crystals and applications, Relaxor Materials, Spintronic: Spin polarization and application, Piezoelectrics for energy harvesting applications, Materials, Polymer electrolytes, Solar energy materials; Polymer electrolytes, Solar energy materials; Polymer electrolytes, Solar energy materials; Polymer electrolytes, Solar energy materials; Polymer electrolytes, Solar energy materials, Polymer electrolytes, Solar energy materials; Polymer electrolytes, Solar energy materials; Polymer electrolytes, Solar energy materials; Polymer electrolytes, Solar energy materials; Polymer electrolytes, Solar energy materials; Polymer electrolyt							
Course code Course code Course title Scheme and Credits Pre- requisite Sheme and Credits Sheme and Credits  Detailed contents  1 Introduction to functional materials: Definition of functional materials used in /domestic and industry applications.  Detailed contents  1 Introduction to functional materials: Definition of functional materials used in /domestic and industry applications.  Detailed contents  1 Introduction to functional materials: Definition of functional materials used in /domestic and industry applications.  Detailed contents  1 Introduction to functional materials: Definition of functional materials introduction to biomaterials for biomedical applications, chemical structure and property of biomaterials, Degradation of biomaterials, Polymeric biomaterials: Introduction, preparation, livurogel biomaterials, Bio conjugation techniques, Biocompatibility, Biomaterials implantation, Evaluation of biomaterials, Nanobiomaterials, Bio materials, Bio conjugation techniques, Biocompatibility, Biomaterials and diagnosis, Cell-Biomaterials interaction, Biomaterial and tissue engineering.  3 Soft & H§d magnetic materials and their applications, DC, low frequency, RF, microwave and recording applications of magnetic oxides and alloys; LMR Materials, Magneto caloric materials and sin glasses, Super paramagnetism, Ferrofluid Malyneto electronics.  Recent developments in the applications of Magnetic Materials, Functionalised magnetic raroparticles.  4 Conducting Polymer Sensors, Actuators and Field-Effect Transistors: Introduction, Synthesis of Conducting Polymer Gas Sensors, Electrochemical Actuators, Conducting Polymer Gas Sensors, Electrochemical Scoulations, Relaxor Materials, Spintronic: Spin polarization and applications, Materials for optoelectronic devices: solar cells & OLED's Conducting Polymer Sensors, Actuators and Field-Effect Transistors: Introduction, Synthesis of Conducting Polymer Sensors, Actuators, Conducting Polymer Sensors, Actuators, Conducting Polymer Sensors, Actuators, Conducting Polymer		I I					
Course code Course title Scheme and Credits Pre- Physics I & II, Material physics, Material science and engineering, Structure property relationship, Nanomaterials.  Dijective so of the course applications.  Detailed contents  1 Introduction to functional materials: Definition of functional materials used in /domestic and industry applications.  Detailed contents  1 Introduction to functional materials: Definition of functional materials used in /domestic and industry applications.  Detailed contents  2 Biomaterials, Types of functional material. 2 Biomaterials: Introduction to biomaterials for biomedical applications, chemical structure and property of biomaterials, Bio conjugation techniques, Biocompatibility, Biomaterials implantation, Evaluation of biomaterials, Nanobiomaterials, Biomaterials for imaging and diagnosis, Cell-Biomaterials for imaging and diagnosis, Cell-Biomaterials and their applications, DC, low frequency, RF, microwave and recording applications of magnetic oxides and alloys; LMK Materials, Magneto caloric materials and fing lasses, Super paramagnetism, Ferrofluid Magneto electronics.  Recent developments in the applications of Magnetic Materials, Functionalised magnetic varioparticles.  Conducting Polymer Sensors, Actuators and Field-Effect Transistors: Introduction, Synthesis of Conducting Polymer Gas Sensors, Electrochemical Actuators, Conducting Polymer Gas Sensors, Electrochemical Actuators, Conducting Polymer FETs.  5 Ferroelectric crystals and applications, Relaxor Materials, Spintronic: Spin polarization and application, Piezoelectrics for energy harvesting applications, Materials, hydrogen storage materials, electroceramics for batteries, fuel cells and		3	nanotechnology in various fields.				
Course code Course title Functional materials  21: 1T: 0P 3 Credits  Pre- requisite s of the course  1 Introduction to functional materials: Definition of functional materials used in domestic and industry applications.  2 Biomaterials: Introduction to biomaterials for biomedical applications, chemical structure and property of biomaterials. Degradation of biomaterials in pegradation of biomaterials. Polymeric biomaterials. Degradation of biomaterials, property of biomaterials, biomaterials, implantation, preparation, liyarogel biomaterials, Bio conjugation techniques, Biocompatibility, Biomaterials implantation, Evaluation of biomaterials, Nano-biomaterials, Biomaterials for imaging and diagnosis, Cell-Biomaterials interaction, Biomaterial and tissue engineering.  3 Soft & Halfd magnetic materials and their applications, DC, low frequency, RF, microwave and recording applications of magnetic oxides and alloys CMR Materials, Magneto caloric materials and spin glasses, Super paramagnetism, Ferrofluid Magneto electronics. Recent developments in the applications of Magnetic oxides and alloys CMR Materials, Functionalised magnetic diagnostic diagnostic Materials, Functionalised magnetic diagnostic		Ο,					
Course title Scheme and Credits Pre- Physics I & II, Material physics, Material science and engineering, Structure property relationship, Nanomaterials. Objective To give students the exposure to newer functional materials used in domestic and industry applications.  Detailed contents  1 Introduction to functional materials: Definition of functional materials used in domestic and industry applications.  2 Biomaterials: Introduction to biomaterials for biomedical applications, chemical structure and property of biomaterials, Degradation of biomaterials, Polymeric biomaterials, Bio conjugation techniques, Biocompatibility, Biomaterials implantation, Evaluation of biomaterials, Nanobiomaterials, Biocompigation techniques, Biocompatibility, Biomaterials implantation, Evaluation of biomaterials, Nanobiomaterials, Biomaterials and tissue engineering.  3 Soft & Hard magnetic materials and their applications, DC, low frequency, RF, microwave and recording applications, DC, low frequency, RF, microwave and recording applications of magnetic oxides and alloys; EMR Materials, Magneto caloric materials and spin glasses. Super paramagnetism, Ferrofluid Magneto electronics.  Recent developments in the applications of Magnetic Materials, Functionalised magnetic varioparticles.  4 Conducting Polymer Sensors, Actuators and Field-Effect Transistors: Introduction, Synthesis of Conducting Polymer, Conducting Polymer Gas Sensors, Electrochemical Actuators, Conducting Polymer Gas Sensors, Electrochemical Actuators, Conducting Polymer FETS.  5 Ferroelectric crystals and applications, Relaxor Materials, Spintronic: Spin polarization and application, Piezoelectrics for energy harvesting applications, Materials, Polymer electrolytes, Solar energy materials, hydrogen storage materials, electroceramics for batteries, fuel cells and			^~	L	Т	Р	Tot
Course title			SMT4507				
title Scheme and Credits Scheme and Credits Pre- Pre- equisite Shanomaterials. Objective so of the contents  I Introduction to functional materials: Definition of functional materials, Types of functional materials.  Biomaterials. I Introduction to functional materials: Definition of functional materials, Types of functional materials for biomedical applications, chemical structure and property of biomaterials, Degradation of biomaterials, Polymeric biomaterials, Biomaterials implantation, preparation, Introduction, Biomaterials, Bio conjugation techniques, Biocompatibility, Biomaterials implantation, Evaluation of biomaterials, Nano-biomaterials, Biomaterials for imaging and diagnosis, Cell-Biomaterials and their applications, DC, low frequency, RF, microwave and recording applications, DC, low frequency, RF, microwave and recording applications of magnetic oxides and alloys, CMR Materials, Agnetic caloric materials and spin glasses, Super paramagnetism, Ferrofluid Magneto electronics.  Recent developments in the applications of Magnetic Materials, Functionalised magnetic dardoparticles.  4 Conducting Polymer Sensors, Actuators and Field-Effect Transistors: Introduction, Synthesis of Conducting Polymer, Conducting Polymer Gas Sensors, Electrochemical Actuators, Conducting Polymer FETS.  5 Ferroelectric crystals and applications, Relaxor Materials, Spintronic: Spin polarization and application, Piezoelectrics for energy harvesting applications, Materials, Polymer electrolytes, Solar ells & OLED'S  6 Energy materials; Polymer electrolytes, Solar ells, electroceramics for batteries, fuel cells and			^				
Scheme and credits   Physics   & II, Material physics, Material science and engineering, Structure property relationship, Nanomaterials.   Physics   To give students the exposure to newer functional materials used in domestic and industry applications.			Functional materials				
and Credits Pre- requisite s Physics I & II, Material physics, Material science and engineering, Structure property relationship. S Nanomaterials. To give students the exposure to newer functional materials used in domestic and industry applications.  Detailed contents  1			'7				
Credits         Pre- Preserval is a physics I & II, Material physics, Material science and engineering, Structure property relationship, Nanomaterials.         Physics I & II, Material physics, Material science and engineering, Structure property relationship, Nanomaterials.         Preserval is a property relationship, Nanomaterials.         Preserval is a property relationship, Nanomaterials.         Preserval is a property relationship, Nanomaterials used in domestic and industry applications.         Preserval is a property relationship, Nanomaterials used in domestic and industry applications.         Preserval is a property relationship, Nanomaterials industry applications of biomaterials.         Preserval is a property relationship, Nanomaterials industry applications of biomaterials.         Preserval is a preserval is a property relationship, Nanomaterials, Polymeric biomaterials introduction of biomaterials introduction, preparation, Ityrogel biomaterials, Bio conjugation techniques, Biocompatibility, Biomaterials, Introduction, preparation, Evaluation of biomaterials, Nanobiomaterials, Biomaterials, Biomaterials, Biomaterials, Biomaterials, Biomaterials, Biomaterials, Preserval interaction, Biomaterials and tissue engineering.         Preserval is a preserval is a preserval interaction, Biomaterials, and tissue engineering.         Preserval is a preserval is a preserval is a preserval is a preserval interaction, Biomaterials, Biomaterials, Biomaterials, Biomaterials, Biomaterials, Biomaterials, Biomaterials, Biomaterials, Magneto caloric materials, and spin glasses, Super paramagnetism, Ferrofluid Magneto electronics.         Preserval is a preserval is a preserval is a preserval is a preserval is a preserval is a preserval is a preserval is a preserval is a preserval is a preserval is a preserval is a preserval is a preserval is a preserval is a preserval is a preserva			2L: 1T: 0P 3 Credits				
Pre- requisite Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications Sharpications S			19				
requisite softhe course property relationship, Nanomaterials.  Dispectives of the course paper of the course applications.  Detailed contents  1 Introduction to functional materials: Definition of functional materials, Types of functional materials for biomedical applications, chemical structure and property of biomaterials, Degradation of biomaterials, Polymeric biomaterials, Biomaterials, Biomaterials, Biomaterials, Biomaterials, Biomaterials, Biomaterials, Biomaterials, Biomaterials, Biomaterials, Biomaterials, Biomaterials, Biomaterials and tissue engineering.  3 Soft & Heid magnetic materials and their applications, DC, low frequency, RF, microwave and recording applications of magnetic oxides and alloys; CMR Materials, Magneto caloric materials and sing glasses, Super paramagnetism, Ferrofluid Magneto electronics.  Recent developments in the applications of Magnetic Materials, Functionalised magnetic ranoparticles.  4 Conducting Polymer Sensors, Actuators and Field-Effect Transistors: Introduction, Synthesis of Conducting Polymer Splymer Sensors, Electrochemical Actuators, Conducting Polymer FETs.  5 Ferroelectric crystals and applications, Relaxor Materials, Spintronic: Spin polarization and applications, Piezoelectrics for energy harvesting applications, Materials: Polymer electrolytes, Solar energy materials: Polymer electrolytes, Solar energy materials, Polymer electrolytes, Solar energy materials, Polymer sensorage materials, electroceramics for batteries, fuel cells and			DI I I C II M I I I I I I I I I I I I I I				
Nanomaterials.   To give students the exposure to newer functional materials used in domestic and industry applications.							
To give students the exposure to newer functional materials used in domestic and industry applications.	-						
petailed contents  I Introduction to functional materials: Definition of functional materials. Types of functional materials.  Biomaterials: Introduction to biomaterials for biomedical applications, chemical structure and property of biomaterials, Degradation of biomaterials, Polymeric biomaterials: Introduction, preparation, lygrogel biomaterials, Bio conjugation techniques, Biocompatibility, Biomaterials implantation, Evaluation of biomaterials inplantation, Evaluation of biomaterials and diagnosis, Cell-Biomaterials interaction, Biomaterial and tissue engineering.  Soft & Hard magnetic materials and their applications, DC, low frequency, RF, microwave and recording applications of magnetic oxides and alloys; CMR Materials, Magneto caloric materials and srin glasses, Super paramagnetism, Ferrofluid Magneto electronics. Recent developments in the applications of Magnetic Materials, Functionalised magnetic ganoparticles. Conducting Polymer Sensors, Actuators and Field-Effect Transistors: Introduction, Synthesis of Conducting Polymers, Conducting Polymer Gas Sensors, Electrochemical Actuators, Conducting Polymer FETS.  Ferroelectric crystals and applications, Relaxor Materials, Spintronic: Spin polarization and applications, Materials for optoelectronic devices: solar cells & OLED's  6 Energy materials: Polymer electrolytes, Solar energy materials, electroceramics for batteries, fuel cells and							
Detailed contents  1							
Detailed contents  1			<u> </u>				
Introduction to functional materials: Definition of functional materials. Types of functional material.	course		аррисацопѕ.				
Introduction to functional materials: Definition of functional materials. Types of functional material.	Datailed		- U				
1 Introduction to functional materials: Definition of functional materials, Types of functional materials. 2 Biomaterials: Introduction to biomaterials for biomedical applications, chemical structure and property of biomaterials, Degradation of biomaterials, Polymeric biomaterials: Introduction, preparation, hydrogel biomaterials; Introduction, preparation, hydrogel biomaterials, Bio conjugation techniques, Biocompatibility, Biomaterials implantation, Evaluation of biomaterials, Nanobiomaterials, Biomaterials for imaging and diagnosis, Cell-Biomaterials interaction, Biomaterial and tissue engineering. 3 Soft & Hard magnetic materials and their applications, DC, low frequency, RF, microwave and recording applications of magnetic oxides and alloys; CMR Materials, Magneto caloric materials and srin glasses, Super paramagnetism, Ferrofluid Magneto electronics. Recent developments in the applications of Magnetic Materials, Functionalised magnetic ranoparticles. 4 Conducting Polymer Sensors, Actuators and Field-Effect Transistors: Introduction, Synthesis of Conducting Polymer Fers. 5 Ferroelectric crystals and applications, Relaxor Materials, Spintronic: Spin polarization and application, Piezoelectrics for energy harvesting applications, Materials for optoelectronic devices: solar cells & OLED's 6 Energy materials: Polymer electrolytes, Solar energy materials, hydrogen storage materials, electroceramics for batteries, fuel cells and			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
functional materials, Types of functional material.  Biomaterials: Introduction to biomaterials for biomedical applications, chemical structure and property of biomaterials, Degradation of biomaterials, Polymeric biomaterials: Introduction, preparation, hydrogel biomaterials, Bio conjugation techniques, Biocompatibility, Biomaterials implantation, Evaluation of biomaterials, Nanobiomaterials, Biomaterials for imaging and diagnosis, Cell-Biomaterials for imaging and diagnosis, Cell-Biomaterials for imaging and diagnosis, Cell-Biomaterials and their applications, DC, low frequency, RF, microwave and recording applications of magnetic oxides and alloys; CMR Materials, Magneto caloric materials and spin glasses, Super paramagnetism, Ferrofluid Magneto electronics.  Recent developments in the applications of Magnetic Materials, Functionalised magnetic ranoparticles.  Conducting Polymer Sensors, Actuators and Field-Effect Transistors: Introduction, Synthesis of Conducting Polymers, Conducting Polymer Gas Sensors, Electrochemical Actuators, Conducting Polymer FETs.  5 Ferroelectric crystals and applications, Relaxor Materials, Spintronic: Spin polarization and application, Piezoelectrics for energy harvesting applications, Materials for optoelectronic devices: solar cells & OLED's  6 Energy materials: Polymer electrolytes, Solar energy materials, hydrogen storage materials, electroceramics for batteries, fuel cells and	contents	7	Introduction to functional materials, Definition of	2	1		3
Biomaterials: Introduction to biomaterials for biomedical applications, chemical structure and property of biomaterials, Degradation of biomaterials, Polymeric biomaterials: Introduction, preparation, Invirogel biomaterials: Introduction, preparation, Invirogel biomaterials, Bio conjugation techniques, Biocompatibility, Biomaterials implantation, Evaluation of biomaterials, Nanobiomaterials, Biomaterials for imaging and diagnosis, Cell-Biomaterials interaction, Biomaterial and tissue engineering.  3 Soft & Hard magnetic materials and their applications, DC, low frequency, RF, microwave and recording applications of magnetic oxides and alloys; CMR Materials, Magneto caloric materials and spin glasses, Super paramagnetism, Ferrofluid Magneto electronics.  Recent developments in the applications of Magnetic Materials, Functionalised magnetic gangoparticles.  4 Conducting Polymer Sensors, Actuators and Field-Effect Transistors: Introduction, Synthesis of Conducting Polymers, Conducting Polymer Gas Sensors, Electrochemical Actuators, Conducting Polymer FETS.  5 Ferroelectric crystals and applications, Relaxor Materials, Spintronic: Spin polarization and application, Piezoelectrics for energy harvesting application, Piezoelectrics for energy harvesting applications, Materials: Polymer electrolytes, Solar energy materials: Polymer electrolytes, Solar energy materials: Polymer storage materials, electroceramics for batteries, fuel cells and							3
biomedical applications, chemical structure and property of biomaterials, Degradation of biomaterials, Polymeric biomaterials: Introduction, preparation, hydrogel biomaterials; Bio conjugation techniques, Biocompatibility, Biomaterials implantation; Evaluation of biomaterials, Nanobiomaterials, Biomaterials for imaging and diagnosis, Cell-Biomaterials interaction, Biomaterial and tissue engineering.  3 Soft & Herd magnetic materials and their applications, DC, low frequency, RF, microwave and recording applications of magnetic oxides and alloys; CMR Materials, Magneto caloric materials and sing lasses, Super paramagnetism, Ferrofluid Magneto electronics.  Recent developments in the applications of Magnetic Materials, Functionalised magnetic varioparticles.  4 Conducting Polymer Sensors, Actuators and Field-Effect Transistors: Introduction, Synthesis of Conducting Polymers, Conducting Polymer Gas Sensors, Electrochemical Actuators, Conducting Polymer FETS.  5 Ferroelectric crystals and applications, Relaxor Materials, Spintronic: Spin polarization and application, Piezoelectrics for energy harvesting applications, Materials for optoelectronic devices: solar cells & OLED's  6 Energy materials: Polymer electrolytes, Solar energy materials, hydrogen storage materials, electroceramics for batteries, fuel cells and		2		1	2		6
property of biomaterials, Degradation of biomaterials, Polymeric biomaterials: Introduction, preparation, hydrogel biomaterials: Introduction, preparation, hydrogel biomaterials, Bio conjugation techniques, Biocompatibility, Biomaterials implantation, Evaluation of biomaterials, Nanobiomaterials, Biomaterials for imaging and diagnosis, Cell-Biomaterials interaction, Biomaterial and tissue engineering.  3 Soft & Hard magnetic materials and their applications, DC, low frequency, RF, microwave and recording applications of magnetic oxides and alloys; CMR Materials, Magneto caloric materials and srin glasses, Super paramagnetism, Ferrofluid Magneto electronics.  Recent developments in the applications of Magnetic Materials, Functionalised magnetic ranoparticles.  4 Conducting Polymer Sensors, Actuators and Field-Effect Transistors: Introduction, Synthesis of Conducting Polymers, Conducting Polymer Gas Sensors, Electrochemical Actuators, Conducting Polymer FETs.  5 Ferroelectric crystals and applications, Relaxor Materials, Spintronic: Spin polarization and application, Piezoelectrics for energy harvesting applications, Materials for optoelectronic devices: solar cells & OLED's  6 Energy materials: Polymer electrolytes, Solar energy materials, hydrogen storage materials, electroceramics for batteries, fuel cells and				4			0
biomaterials, Polymeric biomaterials: Introduction, preparation, hydrogel biomaterials, Bio conjugation techniques, Biocompatibility, Biomaterials implantation, Evaluation of biomaterials, Nanobiomaterials, Biomaterials for imaging and diagnosis, Cell-Biomaterials interaction, Biomaterial and tissue engineering.  3 Soft & Hêrd magnetic materials and their applications, DC, low frequency, RF, microwave and recording applications of magnetic oxides and alloys; CMR Materials, Magneto caloric materials and spin glasses, Super paramagnetism, Ferrofluid Magneto electronics.  Recent developments in the applications of Magnetic Materials, Functionalised magnetic ranoparticles.  4 Conducting Polymer Sensors, Actuators and Field-Effect Transistors: Introduction, Synthesis of Conducting Polymers, Conducting Polymer Gas Sensors, Electrochemical Actuators, Conducting Polymer FETs.  5 Ferroelectric crystals and applications, Relaxor Materials, Spintronic: Spin polarization and application, Piezoelectrics for energy harvesting applications, Materials for optoelectronic devices: solar cells & OLED's  6 Energy materials: Polymer electrolytes, Solar energy materials, electroceramics for batteries, fuel cells and							
preparation, hydrogel biomaterials, Bio conjugation techniques, Biocompatibility, Biomaterials implantation, Evaluation of biomaterials, Nanobiomaterials, Biomaterials for imaging and diagnosis, Cell-Biomaterials interaction, Biomaterial and tissue engineering.  3 Soft & Hard magnetic materials and their applications, DC, low frequency, RF, microwave and recording applications of magnetic oxides and alloys; CMR Materials, Magneto caloric materials and srin glasses, Super paramagnetism, Ferrofluid Magneto electronics.  Recent developments in the applications of Magnetic Materials, Functionalised magnetic rarioparticles.  4 Conducting Polymer Sensors, Actuators and Field-Effect Transistors: Introduction, Synthesis of Conducting Polymers, Conducting Polymer Gas Sensors, Electrochemical Actuators, Conducting Polymer FETs.  5 Ferroelectric crystals and applications, Relaxor Materials, Spintronic: Spin polarization and application, Piezoelectrics for energy harvesting applications, Materials for optoelectronic devices: solar cells & OLED's  Energy materials: Polymer electrolytes, Solar energy materials, hydrogen storage materials, electroceramics for batteries, fuel cells and							
techniques, Biocompatibility, Biomaterials implantation, Evaluation of biomaterials, Nanobiomaterials, Biomaterials for imaging and diagnosis, Cell-Biomaterials interaction, Biomaterial and tissue engineering.  3 Soft & Hard magnetic materials and their applications, DC, low frequency, RF, microwave and recording applications of magnetic oxides and alloys; CMR Materials, Magneto caloric materials and spin glasses, Super paramagnetism, Ferrofluid Magneto electronics.  Recent developments in the applications of Magnetic Materials, Functionalised magnetic nanoparticles.  4 Conducting Polymer Sensors, Actuators and Field-Effect Transistors: Introduction, Synthesis of Conducting Polymers, Conducting Polymer Gas Sensors, Electrochemical Actuators, Conducting Polymer FETS.  5 Ferroelectric crystals and applications, Relaxor Materials, Spintronic: Spin polarization and application, Piezoelectrics for energy harvesting applications, Materials for optoelectronic devices: solar cells & OLED's  6 Energy materials: Polymer electrolytes, Solar energy materials, hydrogen storage materials, electroceramics for batteries, fuel cells and							
implantation, Evaluation of biomaterials, Nanobiomaterials, Biomaterials for imaging and diagnosis, Cell-Biomaterials interaction, Biomaterial and tissue engineering.  3 Soft & Hard magnetic materials and their applications, DC, low frequency, RF, microwave and recording applications of magnetic oxides and alloys; CMR Materials, Magneto caloric materials and srin glasses, Super paramagnetism, Ferrofluid Magneto electronics.  Recent developments in the applications of Magnetic Materials, Functionalised magnetic transparticles.  4 Conducting Polymer Sensors, Actuators and Field-Effect Transistors: Introduction, Synthesis of Conducting Polymers, Conducting Polymer Gas Sensors, Electrochemical Actuators, Conducting Polymer FETs.  5 Ferroelectric crystals and applications, Relaxor Materials, Spintronic: Spin polarization and application, Piezoelectrics for energy harvesting applications, Materials for optoelectronic devices: solar cells & OLED's  6 Energy materials: Polymer electrolytes, Solar energy materials, hydrogen storage materials, electroceramics for batteries, fuel cells and			techniques Riocompatibility Riomaterials				
biomaterials, Biomaterials for imaging and diagnosis, Cell-Biomaterials interaction, Biomaterial and tissue engineering.  3 Soft & Hard magnetic materials and their applications, DC, low frequency, RF, microwave and recording applications of magnetic oxides and alloys; CMR Materials, Magneto caloric materials and srin glasses, Super paramagnetism, Ferrofluid Magneto electronics.  Recent developments in the applications of Magnetic Materials, Functionalised magnetic transparticles.  4 Conducting Polymer Sensors, Actuators and Field-Effect Transistors: Introduction, Synthesis of Conducting Polymers, Conducting Polymer Gas Sensors, Electrochemical Actuators, Conducting Polymer FETs.  5 Ferroelectric crystals and applications, Relaxor Materials, Spintronic: Spin polarization and application, Piezoelectrics for energy harvesting applications, Materials for optoelectronic devices: solar cells & OLED's  6 Energy materials: Polymer electrolytes, Solar energy materials, electroceramics for batteries, fuel cells and							
diagnosis, Cell-Biomaterials interaction, Biomaterial and tissue engineering.  3 Soft & Hard magnetic materials and their applications, DC, low frequency, RF, microwave and recording applications of magnetic oxides and alloys; CMR Materials, Magneto caloric materials and spin glasses, Super paramagnetism, Ferrofluid Magneto electronics.  Recent developments in the applications of Magnetic Materials, Functionalised magnetic ranoparticles.  4 Conducting Polymer Sensors, Actuators and Field-Effect Transistors: Introduction, Synthesis of Conducting Polymers, Conducting Polymer Gas Sensors, Electrochemical Actuators, Conducting Polymer FETs.  5 Ferroelectric crystals and applications, Relaxor Materials, Spintronic: Spin polarization and application, Piezoelectrics for energy harvesting applications, Materials for optoelectronic devices: solar cells & OLED's  6 Energy materials: Polymer electrolytes, Solar energy materials, hydrogen storage materials, electroceramics for batteries, fuel cells and							
and tissue engineering.  Soft & Hard magnetic materials and their applications, DC, low frequency, RF, microwave and recording applications of magnetic oxides and alloys; CMR Materials, Magneto caloric materials and srin glasses, Super paramagnetism, Ferrofluid Magneto electronics.  Recent developments in the applications of Magnetic Materials, Functionalised magnetic ranoparticles.  Conducting Polymer Sensors, Actuators and Field-Effect Transistors: Introduction, Synthesis of Conducting Polymers, Conducting Polymer Gas Sensors, Electrochemical Actuators, Conducting Polymer FETs.  Ferroelectric crystals and applications, Relaxor Materials, Spintronic: Spin polarization and application, Piezoelectrics for energy harvesting applications, Materials for optoelectronic devices: solar cells & OLED's  Energy materials: Polymer electrolytes, Solar energy materials, hydrogen storage materials, electroceramics for batteries, fuel cells and			diagnosis. Cell-Biomaterials interaction. Biomaterial				
Soft & Hard magnetic materials and their applications, DC, low frequency, RF, microwave and recording applications of magnetic oxides and alloys; CMR Materials, Magneto caloric materials and snin glasses, Super paramagnetism, Ferrofluid Magneto electronics.  Recent developments in the applications of Magnetic Materials, Functionalised magnetic ranoparticles.  4 Conducting Polymer Sensors, Actuators and Field-Effect Transistors: Introduction, Synthesis of Conducting Polymers, Conducting Polymer Gas Sensors, Electrochemical Actuators, Conducting Polymer FETs.  5 Ferroelectric crystals and applications, Relaxor Materials, Spintronic: Spin polarization and application, Piezoelectrics for energy harvesting applications, Materials for optoelectronic devices: solar cells & OLED's  6 Energy materials: Polymer electrolytes, Solar energy materials, hydrogen storage materials, electroceramics for batteries, fuel cells and							
applications, DC, low frequency, RF, microwave and recording applications of magnetic oxides and alloys; CMR Materials, Magneto caloric materials and snin glasses, Super paramagnetism, Ferrofluid Magneto electronics.  Recent developments in the applications of Magnetic Materials, Functionalised magnetic Tanoparticles.  4 Conducting Polymer Sensors, Actuators and Field-Effect Transistors: Introduction, Synthesis of Conducting Polymers, Conducting Polymer Gas Sensors, Electrochemical Actuators, Conducting Polymer FETs.  5 Ferroelectric crystals and applications, Relaxor Materials, Spintronic: Spin polarization and application, Piezoelectrics for energy harvesting applications, Materials for optoelectronic devices: solar cells & OLED's  6 Energy materials: Polymer electrolytes, Solar energy materials, hydrogen storage materials, electroceramics for batteries, fuel cells and		3	Soft & Hard magnetic materials and their	4	2		6
recording applications of magnetic oxides and alloys; CMR Materials, Magneto caloric materials and spin glasses, Super paramagnetism, Ferrofluid Magneto electronics. Recent developments in the applications of Magnetic Materials, Functionalised magnetic ranoparticles.  4 Conducting Polymer Sensors, Actuators and Field-Effect Transistors: Introduction, Synthesis of Conducting Polymers, Conducting Polymer Gas Sensors, Electrochemical Actuators, Conducting Polymer FETs.  5 Ferroelectric crystals and applications, Relaxor Materials, Spintronic: Spin polarization and application, Piezoelectrics for energy harvesting applications, Materials for optoelectronic devices: solar cells & OLED's  6 Energy materials: Polymer electrolytes, Solar energy materials, hydrogen storage materials, electroceramics for batteries, fuel cells and							
and spin glasses, Super paramagnetism, Ferrofluid Magneto electronics. Recent developments in the applications of Magnetic Materials, Functionalised magnetic nanoparticles.  4 Conducting Polymer Sensors, Actuators and Field-Effect Transistors: Introduction, Synthesis of Conducting Polymers, Conducting Polymer Gas Sensors, Electrochemical Actuators, Conducting Polymer FETs.  5 Ferroelectric crystals and applications, Relaxor Materials, Spintronic: Spin polarization and application, Piezoelectrics for energy harvesting applications, Materials for optoelectronic devices: solar cells & OLED's  6 Energy materials: Polymer electrolytes, Solar energy materials, hydrogen storage materials, electroceramics for batteries, fuel cells and							
Magneto electronics. Recent developments in the applications of Magnetic Materials, Functionalised magnetic rigroparticles.  4 Conducting Polymer Sensors, Actuators and Field-Effect Transistors: Introduction, Synthesis of Conducting Polymers, Conducting Polymer Gas Sensors, Electrochemical Actuators, Conducting Polymer FETs.  5 Ferroelectric crystals and applications, Relaxor Materials, Spintronic: Spin polarization and application, Piezoelectrics for energy harvesting applications, Materials for optoelectronic devices: solar cells & OLED's  6 Energy materials: Polymer electrolytes, Solar energy materials, hydrogen storage materials, electroceramics for batteries, fuel cells and							
Recent developments in the applications of Magnetic Materials, Functionalised magnetic nanoparticles.  4 Conducting Polymer Sensors, Actuators and Field- Effect Transistors: Introduction, Synthesis of Conducting Polymers, Conducting Polymer Gas Sensors, Electrochemical Actuators, Conducting Polymer FETs.  5 Ferroelectric crystals and applications, Relaxor Materials, Spintronic: Spin polarization and application, Piezoelectrics for energy harvesting applications, Materials for optoelectronic devices: solar cells & OLED's  6 Energy materials: Polymer electrolytes, Solar energy materials, hydrogen storage materials, electroceramics for batteries, fuel cells and			and spin glasses, Super paramagnetism, Ferrofluid				
Magnetic Materials, Functionalised magnetic rianoparticles.  4 Conducting Polymer Sensors, Actuators and Field-Effect Transistors: Introduction, Synthesis of Conducting Polymers, Conducting Polymer Gas Sensors, Electrochemical Actuators, Conducting Polymer FETs.  5 Ferroelectric crystals and applications, Relaxor Materials, Spintronic: Spin polarization and application, Piezoelectrics for energy harvesting applications, Materials for optoelectronic devices: solar cells & OLED's  6 Energy materials: Polymer electrolytes, Solar energy materials, hydrogen storage materials, electroceramics for batteries, fuel cells and							
<ul> <li>tanoparticles.</li> <li>Conducting Polymer Sensors, Actuators and Field-Effect Transistors: Introduction, Synthesis of Conducting Polymers, Conducting Polymer Gas Sensors, Electrochemical Actuators, Conducting Polymer FETs.</li> <li>Ferroelectric crystals and applications, Relaxor Materials, Spintronic: Spin polarization and application, Piezoelectrics for energy harvesting applications, Materials for optoelectronic devices: solar cells &amp; OLED's</li> <li>Energy materials: Polymer electrolytes, Solar energy materials, hydrogen storage materials, electroceramics for batteries, fuel cells and</li> </ul>							
4 Conducting Polymer Sensors, Actuators and Field- Effect Transistors: Introduction, Synthesis of Conducting Polymers, Conducting Polymer Gas Sensors, Electrochemical Actuators, Conducting Polymer FETs.  5 Ferroelectric crystals and applications, Relaxor Materials, Spintronic: Spin polarization and application, Piezoelectrics for energy harvesting applications, Materials for optoelectronic devices: solar cells & OLED's  6 Energy materials: Polymer electrolytes, Solar energy materials, hydrogen storage materials, electroceramics for batteries, fuel cells and							
Effect Transistors: Introduction, Synthesis of Conducting Polymers, Conducting Polymer Gas Sensors, Electrochemical Actuators, Conducting Polymer FETs.  5 Ferroelectric crystals and applications, Relaxor Materials, Spintronic: Spin polarization and application, Piezoelectrics for energy harvesting applications, Materials for optoelectronic devices: solar cells & OLED's  6 Energy materials: Polymer electrolytes, Solar energy materials, hydrogen storage materials, electroceramics for batteries, fuel cells and				_			
Conducting Polymers, Conducting Polymer Gas Sensors, Electrochemical Actuators, Conducting Polymer FETs.  5 Ferroelectric crystals and applications, Relaxor Materials, Spintronic: Spin polarization and application, Piezoelectrics for energy harvesting applications, Materials for optoelectronic devices: solar cells & OLED's  6 Energy materials: Polymer electrolytes, Solar energy materials, hydrogen storage materials, electroceramics for batteries, fuel cells and		4		4	2		6
Sensors, Electrochemical Actuators, Conducting Polymer FETs.  5 Ferroelectric crystals and applications, Relaxor Materials, Spintronic: Spin polarization and application, Piezoelectrics for energy harvesting applications, Materials for optoelectronic devices: solar cells & OLED's  6 Energy materials: Polymer electrolytes, Solar energy materials, hydrogen storage materials, electroceramics for batteries, fuel cells and							
Polymer FETs.  5 Ferroelectric crystals and applications, Relaxor Materials, Spintronic: Spin polarization and application, Piezoelectrics for energy harvesting applications, Materials for optoelectronic devices: solar cells & OLED's  6 Energy materials: Polymer electrolytes, Solar energy materials, hydrogen storage materials, electroceramics for batteries, fuel cells and							
Ferroelectric crystals and applications, Relaxor Materials, Spintronic: Spin polarization and application, Piezoelectrics for energy harvesting applications, Materials for optoelectronic devices: solar cells & OLED's  Energy materials: Polymer electrolytes, Solar energy materials, hydrogen storage materials, electroceramics for batteries, fuel cells and							
Materials, Spintronic: Spin polarization and application, Piezoelectrics for energy harvesting applications, Materials for optoelectronic devices: solar cells & OLED's  6 Energy materials: Polymer electrolytes, Solar energy materials, hydrogen storage materials, electroceramics for batteries, fuel cells and		E		Λ	2		6
application, Piezoelectrics for energy harvesting applications, Materials for optoelectronic devices: solar cells & OLED's  6 Energy materials: Polymer electrolytes, Solar energy materials, hydrogen storage materials, electroceramics for batteries, fuel cells and		7		4	2		6
applications, Materials for optoelectronic devices: solar cells & OLED's  6 Energy materials: Polymer electrolytes, Solar energy materials, hydrogen storage materials, electroceramics for batteries, fuel cells and							
solar cells & OLED's  Energy materials: Polymer electrolytes, Solar energy materials, hydrogen storage materials, electroceramics for batteries, fuel cells and							
Energy materials: Polymer electrolytes, Solar energy materials, hydrogen storage materials, electroceramics for batteries, fuel cells and		-1					
energy materials, hydrogen storage materials, electroceramics for batteries, fuel cells and		6		1	2		6
electroceramics for batteries, fuel cells and		0 1		-			U
			sensors.				
		7		2	1		3

			such as fuels, moderators, control rods, coolants, reflectors and structural materials. Fabrication of fuel and cladding materials				
			Total	2 4	1 2		36
Suggest ed books.							
		1	Functional Materials by S. Banerjee, A.K. Tyagi, 1st edition, imprint by elseiver				
		2	Smart materials and structures. By M. V. Gandhi and B. S. Thompson, Chapman and Hall, London 1992.				
		3	Energy Materials by Duncan W Bruce, Dermot O'Hare, Richard I. Walton, John Wiley & sons, 2011.				
		4	Handbook of Advanced Materials: Enabling New Designs by James K. Wessel, John Wiley & sons, 2004.				
Outcome s			Students will				
	CO 1		acquire detailed knowledge of different advanced functional materials.				
	CO 2		identify the functional materials suitable for given applications.				
			^			_	ours
Course			V	L	Т	Р	Tot
code			SMP4301				
Course title			Material Physics laboratory				
Scheme and Credits			0L: 0T: 4P 2 Credits				
Pre- requisite s			Physics, Physics II and Material Physics.				
Objectiv es of the course			To apply various testing methods for assessing the mechanical, thermal, electrical and optical properties of materials.				
Detailed contents			20				
contents		1	To find the Young's modulus of given material.				
		2	To estimate the Dielectric constant and curie temperature of given sample.				
		3	Characterization of photoresistors (LDR characterization).				
		4	Evaluation of moisture content.  Measurement of contact angle and surface energy				
		5	using surface Goniometer.				
		6 7.0	Hardness measurement using Durometer.  Solar cell characterization.				
		1/4	Determination of Refractive index of given liquid				
		8	using travelling microscope.				
		10	Four probe method for Band gap measurement.  B-H Characterization of given sample.				
		7	Total				48
Suggest ed books.	B	X					
		1	Handbook of Plastics Analysis, H. Lobo and J. V. Bonilla, Marcel Dekker.				
		2	Instrumental Methods by Dyer.				

<b>-</b>				ı			
		3	Handbook of polymer Testing Roger Brown, Marcel Dekker Inc.				
Outcome s			Student will				
	СО		Able to carry out appropriate characterization of				
	1		given material sample.				
	CO 2		Identify the application of engineering materials and physical properties.				
	CO 3		Strengthen the theoretical knowledge of material physics.				
			OV.	L	Т	P	Tot
Course code			SMP4402				
Course			Materials processing and characterization				
title			laboratory.				
Scheme			'7				
and Credits			OL: OT: 4P 2 Credits				
Pre-			Polymer science and technology I, Structural				
requisite s			property relationship, Material science and engineering.				
Objectiv			To acquaint students practical knowledge of				
es of the course			polymeric material processing techniques and charaterization.				
Detailed contents			4				
Comcond		1	Compounding of Polymeric material using two roll mill				
		2	Compounding of Polymeric material using compressing molding				
		3	Injection Molding				
		4	Melt compounding and processing of Polymeric				
			materials using twin screw extruder				
		5	Electrospinning				
		6	Physical Vapor Deposition (PVD)				
		7	Sintering				
		8	Chemical methods of Polymeric materials by Fourier Transform Infrared Spectrophotometer (FTIR)				
		9	Structure analysis of Polymeric materials by X-Ray Diffraction (XRD)				
			Total				48
Suggest			6				
ed			, Υ.				
books.			4				
		1	Folymer Processing Fundamentals, Osswald, A. Tim, Hanser Publisher, 1998.				
		2	Polymer Processing and Characterization, Sabu Thomas, AAP, 2012.				
		.6	Polymer Extrusion by Chris Rauwendaal, Carl				
		.6	Hanser Verlag GmbH & Co, 3rd Revised edition, 1994				
Outcome		0					
S	CO	QX.	Able to handle processing techniques of given				
	1 0	7	material sample.				
	CO '		Identify the application of engineering materials and physical properties.				
	СО		Able to carry out appropriate characterization of				
	3		given material sample.				

## Textiles

SP #	Course Code (IOCB)	Course Code (MARJ)	Туре	List of Subjects
1			Theory	
2			Theory	
3			Theory	
4			Theory	٨
5			Theory	, V
6			Theory	0,
7			Theory	C,
1			Laborator	^0
			У	' V

Course Code: STT3201	Course Title:	Cred	Credits = 4	
	Technology of Fibres and Polymers	L	T	P
	Total contact hours: 36	2	1	0

Students will have better understanding of different natural and synthetic fibres, their properties as well as important concept of polymer chemistry which will help in manufacturing as well as designing processing parameters.

Sr No.	Course Contents (Topics and subtopics)	Reqd. hrs
1	Introduction to textile fibre as polymer, Fibre forming characteristics of polymers,	4
1	1 1.0	4
	Definition of various basic textile terms, Introduction to Fibre, Yarn,	
	Fabric, Classification of fibres based on sources of origin and on chemical	
2	Natural fibres of plant, animal and mineral origin, chemistry, morphology,	8
	physical and chemical properties, structure property relationship with application,	
	commercially important fibres like cotton, jute, linen, bamboo, wool, silk etc.,	
	Fibre to fabric conversion steps.	
3	Semi-synthetic fibres such as viscose rayon, cuprammonium rayon, acetate	4
	rayon, bamboo rayon and lyocell with respect to chemistry, manufacturing	
	process, morphology, physical and chemical properties and structure property	
	relationship with applications.	
4	Synthetic fibres such as polyester and its variants, polyamides, acrylic,	10
	polypropylene, etc with respect to their raw materials, synthesis, manufacturing	
	processes including LOY, FOY, POY, FDY, draw ratio, physical and chemical	
5	General polymer chemistry; Classification of polymers, synthesis and mechanism, Techniques of polymerization.	4
6	Types of polymeric Molecular weight and its determination.	2
7	Microstructure of polymers, Fibre modification through texturization, TiO2 and	4
	chemical modification (using co monomer, other monomers and grafting), Brief	
	idea about nolymer composites: Polymer waste and techniques of utilization	
	List of Text Books/ Reference Books	
1	Textile Fibres-I, Mathews, J.M, 4th edition, 1924.	
2	Textile Chemistry, Peters R.H, Vol-1, Elsevier Publishing Company, London, 1963.	
3	Man-made Fibres, Moncriff, R.W., Newnes Butterworth, London, 6th edition, 1965.	
4	Man-made Fibres, Moncriff, R.W., Butterworth Science, London, 6th edition, 1975.	

5	Textile Fibres, Shenai V.A., Vol-1, Sevak Publications, Bombay, 3rd edition, 1991.		
6	Joseph's Introductory Textile Science, Joseph, M.L., Hudson P.B., Clapp A. C., Fortworth:		
	Harcourt Brace Jovanovich College Publication, 6th edition, 1993.		
7	Microscopy of Textile Fibres, Greaves, P.H., Saville B.P.Oxford : BIOS Scientific Publishers Ltd., 1995.		
8	Modern Textile Characterization Methods, Raheel, M. Marcel Dekker Inc., New York, 1996.		
9 Handbook of Fibre Chemistry, Lewin Menachem, Eli M. Pearce, Marcel Dekker Inc., Ne York, 2nd edition, 1998.			
10 Mishra, S. P. A Text Book of Fibre Science and Technology. India: New Age International			
11	Ghosh, P Fibre Science and Technology. United States: McGraw Hill Education (India)		
	Private Limited, 2004		
11	Kothari, V. Manufactured Fibre Technology. Netherlands: Springer Netherland, 2012		
13 Natural Polymer man-made Fibres, Carrol and Porczynski C.Z., National Trade Press Ltd., London, 1965			
14	Visco-Elastic Properties of Polymers, Ferry, J.D., John Wiley and Sons, New York, 3 rd		
15	Textbook of Polymer Science, Billmeyer F.W., John Wiley and Sons, New York, 3rd edition, 1984.		
16	Polymer Science, V R Gowarikar, New Age international (P) Ltd Publications, New		
	Course Outcomes (students will be able to)		
1	<b>Understand</b> fibre forming properties with different textile terms as well as their classification (K4).		
2	Acquire deeper understanding and insights in basic chemistry, production processes and physical and chemical		
	properties of Natural and Synthetic fibers. (1/2).		
3	Understand different areas of applications of these fibres vis a vis their properties. (K4).		
4	Comprehend fundamental knowledge of polymers, their classifications, as well as techniques and mechanism of polymerization(K2).		
5	Describe chemical and physical methods used for fibre modification and recycling. (K2)		

Total contact hours: 36	Course Code: STT3302	Course Title: Technology of Textile Dyeing	Cr	edits =	<b>- 4</b>
Total contact hours: 36 3 1	S113302	80	L	Т	P
(7		Total contact hours: 36	3	1	0

Student will understand the importance and relevance of textile coloration, the problems and remedies to solve them, the developments in machinery with respect to growth of industry, the quality of dyed textiles and environmental relevance of dyeing processes

Sr.No.	Course contents (topics/subtopics)	Required	
	8	hrs	
SECTION I			
1	Physical and chemical characteristics of textile fibres in relation to dyeing,	2	
	Pretreatments of textiles and quality of water in relation to dyeing		
2	Parameters of quality dyeing, machines used and terms used; Classification of	2	
	dyes based on application, Performance characteristics of dyed textiles		
3	Earlier developments in processes and machinery for dyeing of textiles in various	2	
	forms such as fibres, yarns, woven and knitted fabric		

4	Dyeing of cellulosic fibres with Direct, Azoic, Vat, Solubilized Vat, Sulphur, Oxidation colours and OBA's	4				
5	Dyeing of polyamide fibres with Acid, Mordant and Metal Complex dyes	2				
6	Dyeing of Acrylic with Basic and modified cationic dyes	2				
7	Dyeing of Indigo and Natural dyes	2				
8	Dyeing of Polyester with Disperse dyes	4				
9	Dyeing of Cellulosics with Reactive dyes	2				
10	Dyeing of blends, Dyeing of union fabrics; Dyeing of micro fibre fabrics	2				
11	11 Batch, semi-continuous and continuous type dyeing machinery for all forms of textiles.					
12	Dosing systems for dyeing, automatic colour and chemical dispensing systems, automated inventory management systems for dyes and chemicals	2				
13	Right First Time approach, Faults in dyed materials and their correction. (4)	2				
14	Machinery used for washing and soaping of dyed materials, Recent developments in machinery and dyeing techniques	2				
15	Concept of conservation of chemicals and water in dyeing	2				
	List of Text Books/ Reference Books					
1 T1	ne Theory and Practice of Wool Dyeing, Bird, C.L., SDC Publ., Bradford, 1972					
3 W 4 Bs 5 Co 6 To	<ul> <li>4 Batchwise Dyeing of Woven Cellulose Fabric by John Shore, SDC Publ., 1993</li> <li>5 Colour for Textiles-User's Handbook, W. Ingamells, SDC Publ., 1993</li> <li>6 Technology of Dyeing, Shenai V.A., Vol. 6, Sevak Publication, Bombay, 1994.</li> </ul>					
	lends Dyeing by John Shore, 1998					
	andbook of Synthetic Dyes and Pigments, K.M.Shah, Multitech Publishing, 1998.					
10 R	Reactive Dyes for Textile Fibres, A. Hunter and M. Renfrew, SDC Publ., 1999.					
11 Ba	11 Basic Principles of Textile Coloration by A D Broadbent, SDC Publ., 2001					
12 S	ynthetic Fibre Dyeing by C Hawkyard, SDC Publ., 2004					
	Course Outcomes (students will be able to)					
1 Understand the importance of various textile processing parameters for quality dyeing. (K1)						
2 Id	entify the correct process to be carried out based on type and form of the substrate (K	(2)				
	0					
4 A	nalyse the quality of dyeing and suggest corrective measures. (K4)					

	Course Code: Course Title: Credit				= 3
ST	Γ3403	Technology of Textile Printing	L	Т	P
		Total contact hours: 36	2	1	0
Tł	ne course will make stud	ent to understand printing as one of the most versatile method of colour significance in value addition of textiles.	ation of	textiles	and its
Sr. No.		Course contents (topics/subtopics)			Req. hrs.
		SECTION I			
1	Introduction to various	colouration technics, Stages in printing of textiles, History of textile pr	rinting.		4
2	synthetic thickeners, cla	ste, functions of various ingredients of print paste, Various Natural, monssification of thickeners, Preparation of stock thickening, Selection of ss, style and method, Rheology of printing pastes			6
3	_	inting and various special styles of printing			4
4	Methods of Printing, Block, stencil, Screen; hand screen, flat bed, rotary, Roller, Transfer and digital printing, Defects and remedial actions in various methods of printing, Machines used for printing, Brief idea about preparation of block, stencil, flat and rotary screens, rollers for printing.				6
5	Various methods of fixation, Selection of fixation method, Machines for fixation and its working; various after treatment of printed materials.				
6	_	polyamides, polyester and acrylic with different dyes. Printing of blend ques; Printing of velvet, carpets and knits	led fibre	e/fabrics	6
7	Evaluation of printed machinery and technique	fabrics, Ecological aspects in printing of textiles; Recent developments;	ents in	printing	6
List	of Text Books/ Referen	ce Books			
1	Dyeing and Printing, Co	ockett S.R., Hilton K.A., Leonard Hill Books Ltd., London, 1961.			
2	Introduction to Textile	Printing, W. Clarke, Newness Butterworths, London, 4th edition, 1977.			
3		niques, Naoharu Oyabu, Mahajan Brothers Publish Ltd., Ahmedabad,	1978.		
4		V. A. Shenai, Sevak Publications, Bombay, Vol. 4, 1990.			
5	Textile Printing by L. V	V. C. Miles, revised second edition published by SDC, 2003			
6	Design and Printing To	tiles by June Fish, 2005			
7	0	iles by H. Ujiiye, Woodhead Publishing Series in Textiles, 2006			
8	Dyeing and Screen-Prin	nting on Textiles by Joanna-Kinnersly Taylor, Revised and Updated, 20	12.		
	4	Course Outcomes (students will be able to)			
1	Comprehend fundame	ntal knowledge on stages of printing (K2)			

2	<b>Describe and use</b> different types of printing methods and styles, fixation conditions, after treatments used for printing. (K3)
3	Identify and evaluate thickening agents, chemicals and dyestuffs for printing; Formulation and rheological properties of printing pastes(K4)
4	Evaluate quality of printed goods and suggest remedial actions to overcome faults in printing (K4)
5	Comprehend and apply the recent developments in the machinery techniques and special printing techniques. (K3)

Course Code: STT3404	Course Title: Chemistry & Applications of Specialty Chemical	s	Credits =		ts = 3
5115404	(2)		L	T	P
	Total contact hours: 36		2	1	0

The course will provide student deep understanding about the role of different functional groups on the properties of various specialty chemicals used in different industries.

Sr. No.	Course contents (topics/subtopics)	Reqd Hrs
1	Nomenclature, functions and classification of textile auxiliaries	2
2	Surface activity phenomenon, Surfactants and their chemistry and applications.	2
_	Anionic Surfactants: Properties and uses of anionics from carboxylic acids, alkylaryl sulphonates, alkyl sulphates, alkane sulphonates and phosphate esters, etc.	4
4	Cationic Surfactants: Chemistry, Properties and applications	2
5	Nonionic Surfactants: Chemistry, Properties and applications	2
Ü	Processing Aids: The structure property relationships of Antimigrants, Defoamers, Dyeing Assistants, Enzymes in Preparation, Lubricants, Peroxide Stabilizers, Printing Binders, Surfactants (Scouring and Wetting Agents), Thickeners Warp Sizes	6
·	Performance Enhancers: The structure property relationships of Antimicrobial Finishes, Antipilling Agents, Antistatic Agents, Durable Press Agents, Dye Fixatives, Elastomeric Finishes, Enzymes in Finishing, Flame Retardants, Hand Modifiers (Softeners and Hand Builders), Repellent Finishes, Soil Release Agents, Stain blockers and Ultraviolet Absorbers	6
-	Qualitative and quantitative evaluation of auxiliaries; Testing of surfactants, detergency, identification of ionic nature.	4
9	Biodegradability of surfactan's	2
10	Banned chemicals in pretreatments, Natural textile auxiliaries	3
11	Recent developments in textile auxiliaries	3
ist of	Text Books/ Reference Books	
1	Textile Chemicals and Auxiliaries, Speel H.C., Reinhold Processing Corporation, New York, 1952	
2	Textile Auxiliaries, Batty, J.W., Dergamon Press, Oxford, 1967.	
3	Colourants and Auxiliaries: Organic Chemistry and Application Properties, Shore, J., SDC, Bradford, 1	990.
4	Laundry Detergents, Smulders, E., Wiley VCH, Weinheim, 2002.	

5	Chemistry and Textile Auxiliaries, Shenai V.A., Vol. 65, Sevak Publication, Bombay, 2nd edition, 2002.			
6	Textile finishing, D. Heywood, ed., Society of Dyers and Colourists, Bradford, England, 2003			
7	Chemical finishing of textiles, W.D. Schindler and P.J. Hauser, Woodhead Publishing, Cambridge, England, 2004			
	Course Outcomes (students will be able to)			
1	Understand fundamental of textile auxiliaries. (K1)			
2	<b>Describe</b> the role of surfactants in textile and their different types (K2)			
3	Write synthesis of important textile auxiliaries (K2)			
4	Evaluate surfactants and identify the ionic nature. (K3)			
5	Explain biodegradability of surfactants and eco-friendly textile auxiliaries. (K2)			

Course Code: STT3405	Course Title: Technology of Finishing	Cre	redits =	= 4
	δ.	L	T	P
	Total contact hours: 36	3	1	0

This course will help students understand effect of various mechanical and chemical finishes in terms of imparting desired functionality to meet the end use application.

	Course contents (topics/subtopics)	Required
	_C`	hrs
1	Objective of textile Finishing and type of finishing techniques.	2
2	Mechanical finishes like Calendaring, raising, saeding, crabbing, potting, compacting, sanforising, pressing, etc and machinery involved.	4
3	Heat setting of synthetic fabrics; Machinery used and principle involved.	4
4	Drying equipment; stenters, vertical drying ranges, curing ranges. Process control systems to enhance efficiency of drying.	4
5	Evaluation and durability of mechanical finishes	2
6	Chemical finishing – conventional softeners, stiffeners, binders, weighting agents, silicone finishes.  Machinery involved in finishing of Yarn, Knit, Woven, Denim, Terry towel, Garments	5
7	Effect finishes - wrinkle resistance, wash and wear, and durable press properties of fabrics; different technologies for resin finishing- Pad-dry cure and Moist cross linking, machinery involved.	4
8	Functional finishes - ant bacterial, flame retarding, water/oil repelling, soil release, antistatic finishes, Moisture management, UV Protection, Cellulase Bio Polishing etc.	8
9	Performance evaluation of conventional and effect finishes.	3
List o	of Text Books/ Reference Books	
1	Textile Finishing, Hall A.J., Heywood book, London, 1966.	
2	An Introduction to Textile Finishing, Marsh J.T., B.I. Publication, Bombay, 1979.	
3	Technology of Finishing, Shenai V.A., Vol. 10, Sevak Publication, Bombay, 1990.	

4	Handbook of Fibre Finish Technology, Slade, P.E., Marcel, New York, 1998.
5	Encyclopedia of Textile Finishing, Rouette, H.K., Springer Verlag, New York, 2001.
6	Chemical Finishing of Textiles, Schindler, W.D and Hauser P.J., Woodhead, 2004
7	Principles of Textile Finishing, Choudhury A. R, Woodhead Publishing, 2017
8	Textile Finishing; Recent Developments and Future Trends, Mittal K.L., Scrivener Publishing, 2017
Course	e Outcomes (students will be able to)
1	<b>Explain</b> different methods and machineries available for application of finish and calculate finish add on onto fabric (K2)
2	<b>Describe</b> different types of softeners, fastness improving agents , antimicrobial, antistatic, flame retardant, their chemistry, application on fabric and evaluation tests (K2)
3	Determine use of appropriate machine and process parameters for finishing(K3)
4	Compare and choose various mechanical and thermal process control systems to enhance efficiency of drying and heat setting (K4)
5	Explain different methods for evaluation and durability of finishes. (K2)

Course (	Course Title	Credits = 2			
STT3507	Effluent Characterisation and Treatment  L		T	P	
	Total contact hours: 36	3	1	0	
	List of Prerequisite Courses				
	Technology of pretreatment, dyeing, printing, and finishing				
	List of Courses where this course will be prerequisite				
	Process house management				
	Description of relevance of this course in the B.Tech. Progra	m			
Understand effluent par	importance and relevant of environmental aspects related to sustainability in textile wet ameters	proc	essing and	d the	
Sr No.	Course contents (topics/subtopics)			Reqd Hrs	
	ter requirement by textile wet processing industry, quality of incoming process water, sta process water, overview of methods used to test incoming water	ındaı	d norms	8	
. Ме	thods to treat incoming water such as, screening, filtration, clarification, disinfection etc	,		8	
. De	sign of effluent trealment plant, primary, secondary and tertiary treatments			10	
. atta	tivated sludge and its modification, trickling filters, rotating biological contractors, ached growth anaerobic systems. Stabilisation ponds, aerated lagoons, etc. Sludge posal. Treated effluent disposal in inland waters and marine environment.	_			
	Books/ Reference Books				
1 Ec	onomy Energy & Environment in textile Wet Processing - ACT, Edited by S.S. Trivedi.				
2 En	vironmental Issues - Technology option for Textile Industry Edited by R. B. Chavan, In	dian	Journal o	of Fibre &	
3 Ec	o-friendly Textiles Challenges to Textile Industry - Textile Committee.				

4	Environmental Success - America Textile Industry, AATCC Symposium - 1996.
Course	Outcomes (students will be able to)
1	Comprehend requirements of water and energy conservations during textile processing (K2)
2	<b>Explain</b> methods to determine presence of metal or other impurities in the effluent. (K2).
3	<b>Demonstrate</b> fundamentals about environment and its charactertics (K3).
4	<b>Describe</b> various ecosystems and ecolables. (K2)
5	Explain effluent treatment procedures and their application to textile processing waste-

Course Code:				Credits = 3			
STT3	506	High-tech and Industrial Fibres		T	P		
		Total contact hours: 36	2	1	0		
The c	ourse will b	e helpful to understand manufacturing, properties and applications of the most fibres	common	ly used	high tech		
Sr No		Course contents (topics/subtopics)		Rec	ıd. Hrs.		
1.	l l	on to fibres and their manufacturing techniques, terminology, Definition of Hig ferences between conventional and High Tech fibres	h Tech		4		
2.		uring of carbon fibres from PAN precursors, viscose and pitch fibres. Difference properties and Application of each type in different areas/fields	es betwee	en	4		
3.		Fibres, Synthesis of polymer, manufacturing, Discussion on Liquid crystals, Difeegular aliphatic and aramid fibre, Application in different areas/fields	ference		4		
1.	structure,	n Molecular weight Polyethylene Fibres, Synthesis, manufacturing, Special focu Discussion on Sheesh Kebab suructure, Gel spinning, Super drawing, Differer efin and UHMW fibre, Application in different areas/fields		een	6		
5.	Discussion	ane/Elastomeric Fibres, Synthesis of polymer along with precursors, manufactum on block/segmented structure, comparison with rubber, stretchability, Applica reas/fields			6		
5.	different t	es including optical glass fibres, their manufacturing, Rotary jet spinning techn ypes like C,E and S, Sizing and its reasons. Properties vis a vis Aramide and Can Tech fibres, Application in different areas/fields	_	I	6		
7.	l l	ussion about different biodegradable fibres, monomers used, polymers synthesis plication in medical field	s, nano		6		
	!	List of Text Books/ Reference Books					
1 N	latural and r	nan-made Textile fibres, G.E Linton, New York duell, sloan and pearce 1966					
1 1		., Vigo, Γ. L. High-tech Fibrous Materials: Composites, Biomedical Materials United States: American Chemical Society, 1991	s, Protec	tive Clo	thing, and		
3 E	icomponent	fires.,Jeffries,Merrow publishing,1996					
4 F	longu, T., Pl	nillips, G. O. New Fibers. United Kingdom: Elsevier Science, 1997					
5 F	ligh Perforn	nance Fibers, J.W.S. Hearle, Wood head Publishing,2001					

6	Advanced fiber spinning Technology, T.Nakajima, Wood head publication, 2002
7	New millennium fiber ,Thongu,CRC press,2005
8	Phillips, G. O., Takigami, M., Hongu, T. New Millennium Fibers. United Kingdom: Elsevier Science, 2005
9	Medical Textiles and biomaterial for healthcare, Anand S.C. Wood head publishing, 2006
10	High-Performance and Specialty Fibers: Concepts, Technology and Modern Applications of Man-Made Fibers for the
	Future. (n.d.). Japan: Springer Japan
11	High Performance Technical Textiles. United Kingdom: Wiley, 2019
	Course Outcomes (students will be able to)
1	Recognise the need, technology and difference between conventional and High Tech fibres (K2)
2	<b>Describe</b> manufacturing of Carbon fibres using different precursors, their applications and properties (K2)
3	Understand manufacturing of Glass and Aramide fibres, their applications including optical
	fibres and properties (K1)
4	<b>Explain</b> manufacturing of Ultra high molecular weight Polyethylene and Poly urethane fibres, their applications and properties (K2)
5	Predict end use applications and performance evaluation criteria of hi-tech fibres (K3)

Special lab-1- Analysis of fibres and fabrics

pecie	i into 1 finally sig of fibres with fublics
Sr No.	Course Contents (Topics and subtopics)
1	Identification of fibres – Hand feel, Microscopic structure, Burning behavior, Chemical
	analysis of fibres,
2	Blend analysis - polycotton, polyvis, woolycot, polywool.
3	Properties of Yarn – Twist, Twist behavior, Crimp characterization of texturised yarn, Yarn numbering determination.
	Properties of Fabric –, Drape, Bending length, Crease recovery angle measurement, Tensile strength, Tear strength, Bursting strength, Abrasion resistance, Pilling.
5	Specification of fabric - GSM, EPI-PFI, Cover factor
	Structure of fabric – basic structure, Understanding common names of polyester fabric varieties - Crepe, Georgette, and chiffon. Cotton fabric varieties – poplin, denim, cord.
7	Hand weaving using frames
8	Characterization - DSC, FTIR, TGA and XRD demo

**Special lab 2- Treatment of textiles** 

Sr No	Course Contents (Topics and subtopics)
1	Stain removal by spotting, chemicals used and methods of stain removing.
2	Methods of Desizing of cotton woven fabric - acidic, enzymatic, and oxidative, qualitative and quantitative
	evaluation of desizing efficiency- TEGEWA scale staining, loss in weight, water absorbency.
3	Scouring of cotton-open boil, pressure boil; Scouring of knitted cotton fabric – conventional and bio-scouring;
	Evaluation of scouring efficiency-Drave's test, sinking time, wicking property, loss in weight, core alkali
	determination – boil fabric and check pH, phenolphthalein.
4	Bleaching of cotton with oxidative and reductive bleaching agent, Scouring and bleaching of polyester/cotton
	blends.
5	Scouring and bleaching of wool, Degumming and Bleaching of Silk
6	Drumming and weight reduction of polyester fabric, Bleaching of polyester with hydrogen peroxide and nylon

	with sodium chlorite.
7	Evaluation of bleaching efficiency - whiteness index and bleach clean-up (peroxide killer - enzymatic and
	reducing agent).
8	Mercerisation of cotton with and without tension, Evaluation of mercerization - Shrinkage, Barium Activity no.,
	dye uptake, strength and elongation; microscopic observation.
9	Assessment of cotton for degradation by Methylene Blue Absorption.
10	Application of OBA/FBA on natural and synthetic fabrics and evaluation of fabric for whiteness index – exhaust
	and pad application
11	Pre-treatment by semi-continuous process – combined desizing, scouring, bleaching; Pre-treatment by
	continuous process – separate and combined scouring, bleaching
12	To study effect of heat setting on dye uptake, dimensional stability and strength